
Polynomial Operations
Course: Introduction to Programming and Data Structures

Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

October 30, 2023

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 1 / 8



Algorithms for Polynomials

Polynomial Operations

Topic to be covered
Representation
Computing a polynomial
Addition
Subtraction
Multiplication
Division

We will discuss polynomial of the form P(x) =
n∑

i=0

aix
i , i.e.,

polynomials with one varible.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 2 / 8



Representation of Polynomials

Representation of Polynomials

P(x) =
n∑

i=0

aix
i

Different ways
How to store a polynomial?

1 Array: Useful when most of the coefficients are present
2 Linked List: Useful when very few coefficients are present
3 Any disadvantage?
4 Which is better

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 3 / 8



Representation of Polynomials

Representation of Polynomials

P(x) =
n∑

i=0

aix
i

Different ways
How to store a polynomial?

1 Array: Useful when most of the coefficients are present
2 Linked List: Useful when very few coefficients are present
3 Any disadvantage?
4 Which is better

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 3 / 8



Computing a polynomial

How to compute a polynomial

P(x) =
n∑

i=0

aix
i

How many multiplication and additions are required? Can We reduce
multiplication further.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 4 / 8



Computing a polynomial

How to compute a polynomial

P(x) =
n∑

i=0

aix
i

How many multiplication and additions are required?

Can We reduce # multiplications further?

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 5 / 8



Computing a polynomial

How to compute a polynomial

P(x) =
n∑

i=0

aix
i

How many multiplication and additions are required?
Can We reduce # multiplications further?

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 5 / 8



Computing a polynomial

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Keep the degree stored.
Structure is required.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 6 / 8



Computing a polynomial

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Keep the degree stored.
Structure is required.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 6 / 8



Computing a polynomial

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Keep the degree stored.
Structure is required.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 6 / 8



Computing a polynomial

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Keep the degree stored.
Structure is required.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 6 / 8



Polynomial Division

Division of a polynomial with another

Consider two polynomials:

f (x) =
n∑

i=0

aix
i , g(x) =

m∑
i=0

bix
i

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 7 / 8



Polynomial Division

Multiplication of two polynomials

Consider two polynomials:

f (x) =
n∑

i=0

aix
i , g(x) =

m∑
i=0

bix
i

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures October 30, 2023 8 / 8



Divide and Conquer: Polynomial Multiplication
Version of October 7, 2014

Divide and Conquer: Polynomial Multiplication Version of October 7, 20141 / 24



The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

A(x) = a0 + a1x + · · ·+ anx
n

B(x) = b0 + b1x + · · ·+ bmx
m

Compute the product A(x)B(x)

Example

A(x) = 1 + 2x + 3x2

B(x) = 3 + 2x + 2x2

A(x)B(x) = 3 + 8x + 15x2 + 10x3 + 6x4

Assume that the coefficients ai and bi are stored in arrays
A[0 . . . n] and B[0 . . .m]
Cost: number of scalar multiplications and additions

Divide and Conquer: Polynomial Multiplication Version of October 7, 20149 / 24



What do we need to compute exactly?

Define

A(x) =
∑n

i=0 aix
i

B(x) =
∑m

i=0 bix
i

C (x) = A(x)B(x) =
∑n+m

k=0 ckx
k

Then

ck =
∑

0≤i≤n, 0≤j≤m, i+j=k

aibj for all 0 ≤ k ≤ m + n

Definition

The vector (c0, c1, . . . , cm+n) is the convolution of the vectors
(a0, a1, . . . , an) and (b0, b1, . . . , bm)

While polynomial multiplication is interesting, real goal is to
calculate convolutions. Major subroutine in digital signal processing

Divide and Conquer: Polynomial Multiplication Version of October 7, 201410 / 24



Objective and Outline

Outline:

Introduction

The polynomial multiplication problem

An O(n2) brute force algorithm

An O(n2) first divide-and-conquer algorithm

An improved divide-and-conquer algorithm

Remarks

Divide and Conquer: Polynomial Multiplication Version of October 7, 201411 / 24



Direct (Brute Force) Approach

To ease analysis, assume n = m.

A(x) =
∑n

i=0 aix
i and B(x) =

∑n
i=0 bix

i

C (x) = A(x)B(x) =
∑2n

k=0 ckx
k with

ck =
∑

0≤i ,j≤n,i+j=k

aibj , for all 0 ≤ k ≤ 2n

Direct approach: Compute all ck ’s using the formula above

Total number of multiplications: Θ(n2)

Total number of additions: Θ(n2)

Complexity: Θ(n2)

Divide and Conquer: Polynomial Multiplication Version of October 7, 201412 / 24



Divide-and-Conquer: Divide

Assume n is a power of 2
Define

A0(x) = a0 + a1x + · · ·+ a n
2
−1x

n
2
−1

A1(x) = a n
2

+ a n
2
+1x + · · ·+ anx

n
2

A(x) = A0(x) + A1(x)x
n
2

Similarly, define B0(x) and B1(x) such that

B(x) = B0(x) + B1(x)x
n
2

A(x)B(x) = A0(x)B0(x)+A0(x)B1(x)x
n
2 +A1(x)B0(x)x

n
2 +A1(x)B1(x)xn

The original problem (of size n) is divided into
4 problems of input size n/2

Divide and Conquer: Polynomial Multiplication Version of October 7, 201414 / 24



Example

A(x) = 2 + 5x + 3x2 + x3 − x4

B(x) = 1 + 2x + 2x2 + 3x3 + 6x4

A(x)B(x) = 2 + 9x + 17x2 + 23x3 + 34x4 + 39x5

+19x6 + 3x7 − 6x8

A0(x) = 2 + 5x ,A1(x) = 3 + x − x2,A(x) = A0(x) + A1(x)x2

B0(x) = 1 + 2x ,B1(x) = 2 + 3x + 6x2,B(x) = B0(x) + B1(x)x2

A0(x)B0(x) = 2 + 9x + 10x2

A1(x)B1(x) = 6 + 11x + 19x2 + 3x3 − 6x4

A0(x)B1(x) = 4 + 16x + 27x2 + 30x3

A1(x)B0(x) = 3 + 7x + x2 − 2x3

A0(x)B1(x) + A1(x)B0(x) = 7 + 23x + 28x2 + 28x3

A0(x)B0(x) + (A0(x)B1(x) + A1(x)B0(x))x2 + A1(x)B1(x)x4

= 2 + 9x + 17x2 + 23x3 + 34x4 + 39x5 + 19x6 + 3x7 − 6x8

Divide and Conquer: Polynomial Multiplication Version of October 7, 201415 / 24



Divide-and-Conquer: Conquer

Conquer: Solve the four subproblems

compute

A0(x)B0(x), A0(x)B1(x), A1(x)B0(x), A1(x)B1(x)

by recursively calling the algorithm 4 times

Combine

adding the following four polynomials

A0(x)B0(x)+A0(x)B1(x)x
n
2 +A1(x)B0(x)x

n
2 +A1(x)B1(x)xn

takes O(n) operations (Why?)

Divide and Conquer: Polynomial Multiplication Version of October 7, 201416 / 24



The First Divide-and-Conquer Algorithm

PolyMulti1(A(x), B(x))

begin
A0(x) = a0 + a1x + · · ·+ a n

2−1x
n
2−1;

A1(x) = a n
2

+ a n
2+1x + · · ·+ anx

n
2 ;

B0(x) = b0 + b1x + · · ·+ b n
2−1x

n
2−1;

B1(x) = b n
2

+ b n
2+1x + · · ·+ bnx

n
2 ;

U(x) = PolyMulti1(A0(x),B0(x));
V (x) = PolyMulti1(A0(x),B1(x));
W (x) = PolyMulti1(A1(x),B0(x));
Z (x) = PolyMulti1(A1(x),B1(x));

return
(
U(x) + [V (x) + W (x)]x

n
2 + Z (x)xn

)
end

Divide and Conquer: Polynomial Multiplication Version of October 7, 201417 / 24



Analysis of Running Time

Assume that n is a power of 2

T (n) =

{
4T (n/2) + n, if n > 1,
1, if n = 1.

By the Master Theorem for recurrences

T (n) = Θ(n2).

Same order as the brute force approach!
No improvement!

Divide and Conquer: Polynomial Multiplication Version of October 7, 201418 / 24



Objective and Outline

Outline:

Introduction

The polynomial multiplication problem

An O(n2) brute force algorithm

An O(n2) first divide-and-conquer algorithm

An improved divide-and-conquer algorithm

Remarks

Divide and Conquer: Polynomial Multiplication Version of October 7, 201419 / 24



Two Observations

Observation 1:

We said that we need the 4 terms:

A0B0, A0B1, A1B0, A1B.

What we really need are the 3 terms:

A0B0, A0B1 + A1B0, A1B1!

Observation 2:

The three terms can be obtained using only 3 multiplications:

Y = (A0 + A1)(B0 + B1)

U = A0B0

Z = A1B1

We need U and Z and
A0B1 + A1B0 = Y − U − Z

Divide and Conquer: Polynomial Multiplication Version of October 7, 201420 / 24



The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

begin
A0(x) = a0 + a1x + · · ·+ a n

2−1x
n
2−1;

A1(x) = a n
2

+ a n
2+1x + · · ·+ anx

n− n
2 ;

B0(x) = b0 + b1x + · · ·+ b n
2−1x

n
2−1;

B1(x) = b n
2

+ b n
2+1x + · · ·+ bnx

n− n
2 ;

Y (x) = PolyMulti2(A0(x) + A1(x),B0(x) + B1(x));
U(x) = PolyMulti2(A0(x),B0(x));
Z (x) = PolyMulti2(A1(x),B1(x));

return
(
U(x) + [Y (x)− U(x)− Z (x)]x

n
2 + Z (x)x2

n
2

)
end

Divide and Conquer: Polynomial Multiplication Version of October 7, 201421 / 24



Running Time of the Modified Algorithm

T (n) =

{
3T (n/2) + n, if n > 1,
1, if n = 1.

By the Master Theorem for recurrences

T (n) = Θ(nlog2 3) = Θ(n1.58...).

Much better than previous Θ(n2) algorithms!

Divide and Conquer: Polynomial Multiplication Version of October 7, 201422 / 24



Remarks

This algorithm can also be used for (long) integer
multiplication

Really designed by Karatsuba (1960, 1962) for that purpose.
Response to conjecture by Kolmogorov, founder of modern
probability, that this would require Θ(n2).

Similar to technique deeloped by Strassen a few years later to
multiply 2 n × n matrices in O(nlog2 7) operations, instead of
the Θ(n3) that a straightforward algorithm would use.

Takeaway from this lesson is that divide-and-conquer doesn’t
always give you faster algorithm. Sometimes, you need to be
more clever.

Coming up. An O(n log n) solution to the polynomial
multiplication problem

It involves strange recasting of the problem and solution using
the Fast Fourier Transform algorithm as a subroutine
The FFT is another classic D & C algorithm that we will learn
soon.

Divide and Conquer: Polynomial Multiplication Version of October 7, 201424 / 24


