Polynomial Operations

Course: Introduction to Programming and Data Structures

Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

tcg crest

Inventing Harmonious Future

October 30, 2023

Polynomial Operations

Topic to be covered
■ Representation

- Computing a polynomial
- Addition
- Subtraction
- Multiplication
- Division

We will discuss polynomial of the form $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$, i.e., polynomials with one varible.

Representation of Polynomials

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

Different ways
How to store a polynomial?

Representation of Polynomials

$P(x)=\sum_{i=0}^{n} a_{i} x^{i}$
Different ways
How to store a polynomial?
1 Array: Useful when most of the coefficients are present
[Linked List: Useful when very few coefficients are present
3 Any disadvantage?
4 Which is better

How to compute a polynomial

$P(x)=\sum_{i=0}^{n} a_{i} x^{i}$
How many multiplication and additions are required? Can We reduce multiplication further.

How to compute a polynomial

$P(x)=\sum_{i=0}^{n} a_{i} x^{i}$
How many multiplication and additions are required?

How to compute a polynomial

$P(x)=\sum_{i=0}^{n} a_{i} x^{i}$
How many multiplication and additions are required? Can We reduce \# multiplications further?

Adding two polynomials

What will be the algorithm?

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Adding two polynomials

What will be the algorithm?

What happen to the degree of new polynomial?

Problem of over computation. Solution?

Keep the degree stored. Structure is required.

Division of a polynomial with another

Consider two polynomials:
$f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{i=0}^{m} b_{i} x^{i}$

Multiplication of two polynomials

Consider two polynomials:
$f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{i=0}^{m} b_{i} x^{i}$

Divide and Conquer: Polynomial Multiplication

Version of October 7, 2014

The Polynomial Multiplication Problem

Definition (Polynomial Multiplication Problem)

Given two polynomials

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
B(x) & =b_{0}+b_{1} x+\cdots+b_{m} x^{m}
\end{aligned}
$$

Compute the product $A(x) B(x)$

Example

$$
\begin{aligned}
A(x) & =1+2 x+3 x^{2} \\
B(x) & =3+2 x+2 x^{2} \\
A(x) B(x) & =3+8 x+15 x^{2}+10 x^{3}+6 x^{4}
\end{aligned}
$$

- Assume that the coefficients a_{i} and b_{i} are stored in arrays $A[0 \ldots n]$ and $B[0 \ldots m]$
- Cost: number of scalar multiplications and additions

What do we need to compute exactly?

Define

- $A(x)=\sum_{i=0}^{n} a_{i} x^{i}$
- $B(x)=\sum_{i=0}^{m} b_{i} x^{i}$
- $C(x)=A(x) B(x)=\sum_{k=0}^{n+m} c_{k} x^{k}$

Then

$$
c_{k}=\sum_{0 \leq i \leq n,} a_{0 \leq j \leq m, i+j=k} b_{j} \quad \text { for all } 0 \leq k \leq m+n
$$

Definition

The vector $\left(c_{0}, c_{1}, \ldots, c_{m+n}\right)$ is the convolution of the vectors $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and $\left(b_{0}, b_{1}, \ldots, b_{m}\right)$

While polynomial multiplication is interesting, real goal is to calculate convolutions. Major subroutine in digital signal processing

Objective and Outline

Outline:

- Introduction
- The polynomial multiplication problem
- An $O\left(n^{2}\right)$ brute force algorithm
- An $O\left(n^{2}\right)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks

Direct (Brute Force) Approach

To ease analysis, assume $n=m$.

- $A(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $B(x)=\sum_{i=0}^{n} b_{i} x^{i}$
- $C(x)=A(x) B(x)=\sum_{k=0}^{2 n} c_{k} x^{k}$ with

$$
c_{k}=\sum_{0 \leq i, j \leq n, i+j=k} a_{i} b_{j}, \quad \text { for all } 0 \leq k \leq 2 n
$$

Direct approach: Compute all c_{k} 's using the formula above

- Total number of multiplications: $\Theta\left(n^{2}\right)$
- Total number of additions: $\Theta\left(n^{2}\right)$
- Complexity: $\Theta\left(n^{2}\right)$

Divide-and-Conquer: Divide

Assume n is a power of 2
Define

$$
\begin{aligned}
A_{0}(x) & =a_{0}+a_{1} x+\cdots+a_{\frac{n}{2}-1} x^{\frac{n}{2}-1} \\
A_{1}(x) & =a_{\frac{n}{2}}+a_{\frac{n}{2}+1} x+\cdots+a_{n} x^{\frac{n}{2}} \\
A(x) & =A_{0}(x)+A_{1}(x) x^{\frac{n}{2}}
\end{aligned}
$$

Similarly, define $B_{0}(x)$ and $B_{1}(x)$ such that

$$
B(x)=B_{0}(x)+B_{1}(x) x^{\frac{n}{2}}
$$

$A(x) B(x)=A_{0}(x) B_{0}(x)+A_{0}(x) B_{1}(x) x^{\frac{n}{2}}+A_{1}(x) B_{0}(x) x^{\frac{n}{2}}+A_{1}(x) B_{1}(x) x^{n}$
The original problem (of size n) is divided into
4 problems of input size $n / 2$

$$
\begin{gathered}
A(x)=2+5 x+3 x^{2}+x^{3}-x^{4} \\
B(x)=1+2 x+2 x^{2}+3 x^{3}+6 x^{4} \\
A(x) B(x)=2+9 x+17 x^{2}+23 x^{3}+34 x^{4}+39 x^{5} \\
\\
+19 x^{6}+3 x^{7}-6 x^{8} \\
A_{0}(x)=2+5 x, A_{1}(x)=3+x-x^{2}, A(x)=A_{0}(x)+A_{1}(x) x^{2} \\
B_{0}(x)=1+2 x, B_{1}(x)=2+3 x+6 x^{2}, B(x)=B_{0}(x)+B_{1}(x) x^{2} \\
A_{0}(x) B_{0}(x)=2+9 x+10 x^{2} \\
A_{1}(x) B_{1}(x)=6+11 x+19 x^{2}+3 x^{3}-6 x^{4} \\
A_{0}(x) B_{1}(x)=4+16 x+27 x^{2}+30 x^{3} \\
A_{1}(x) B_{0}(x)=3+7 x+x^{2}-2 x^{3} \\
A_{0}(x) B_{1}(x)+A_{1}(x) B_{0}(x)=7+23 x+28 x^{2}+28 x^{3} \\
\\
A_{0}(x) B_{0}(x)+\left(A_{0}(x) B_{1}(x)+A_{1}(x) B_{0}(x)\right) x^{2}+A_{1}(x) B_{1}(x) x^{4} \\
=2+9 x+17 x^{2}+23 x^{3}+34 x^{4}+39 x^{5}+19 x^{6}+3 x^{7}-6 x^{8}
\end{gathered}
$$

Divide-and-Conquer: Conquer

Conquer: Solve the four subproblems

- compute

$$
A_{0}(x) B_{0}(x), \quad A_{0}(x) B_{1}(x), \quad A_{1}(x) B_{0}(x), \quad A_{1}(x) B_{1}(x)
$$

by recursively calling the algorithm 4 times
Combine

- adding the following four polynomials

$$
A_{0}(x) B_{0}(x)+A_{0}(x) B_{1}(x) x^{\frac{n}{2}}+A_{1}(x) B_{0}(x) x^{\frac{n}{2}}+A_{1}(x) B_{1}(x) x^{n}
$$

- takes $O(n)$ operations (Why?)

PolyMulti1(A(x), B(x))

begin

```
    \(A_{0}(x)=a_{0}+a_{1} x+\cdots+a_{\frac{n}{2}-1} x^{\frac{n}{2}-1} ;\)
    \(A_{1}(x)=a_{\frac{n}{2}}+a_{\frac{n}{2}+1} x+\cdots+a_{n} x^{\frac{n}{2}}\);
    \(B_{0}(x)=b_{0}+b_{1} x+\cdots+b_{\frac{n}{2}-1} x^{\frac{n}{2}-1}\);
    \(B_{1}(x)=b_{\frac{n}{2}}+b_{\frac{n}{2}+1} x+\cdots+b_{n} x^{\frac{n}{2}}\);
    \(U(x)=\) PolyMulti1 \(\left(A_{0}(x), B_{0}(x)\right)\);
    \(V(x)=\) PolyMulti1 \(\left(A_{0}(x), B_{1}(x)\right)\);
    \(W(x)=\) PolyMulti1 \(\left(A_{1}(x), B_{0}(x)\right)\);
    \(Z(x)=\) PolyMulti1 \(\left(A_{1}(x), B_{1}(x)\right)\);
    return \(\left(U(x)+[V(x)+W(x)] x^{\frac{n}{2}}+Z(x) x^{n}\right)\)
end
```


Analysis of Running Time

Assume that n is a power of 2

$$
T(n)= \begin{cases}4 T(n / 2)+n, & \text { if } n>1 \\ 1, & \text { if } n=1\end{cases}
$$

By the Master Theorem for recurrences

$$
T(n)=\Theta\left(n^{2}\right)
$$

Same order as the brute force approach! No improvement!

Objective and Outline

Outline:

- Introduction
- The polynomial multiplication problem
- An $O\left(n^{2}\right)$ brute force algorithm
- An $O\left(n^{2}\right)$ first divide-and-conquer algorithm
- An improved divide-and-conquer algorithm
- Remarks

Observation 1:
We said that we need the 4 terms:

$$
A_{0} B_{0}, A_{0} B_{1}, A_{1} B_{0}, A_{1} B .
$$

What we really need are the 3 terms:

$$
A_{0} B_{0}, A_{0} B_{1}+A_{1} B_{0}, A_{1} B_{1}!
$$

Observation 2:
The three terms can be obtained using only 3 multiplications:

$$
\begin{aligned}
Y & =\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) \\
U & =A_{0} B_{0} \\
Z & =A_{1} B_{1}
\end{aligned}
$$

- We need U and Z and
- $A_{0} B_{1}+A_{1} B_{0}=Y-U-Z$

The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

```
begin
    A (x) = a 0 + a }\mp@subsup{\mp@code{1}}{0}{
    A
    B0}(x)=\mp@subsup{b}{0}{}+\mp@subsup{b}{1}{}x+\cdots+\mp@subsup{b}{\frac{n}{2}-1}{}\mp@subsup{x}{}{\frac{n}{2}-1}
    B
    Y(x)=PolyMulti2( }\mp@subsup{A}{0}{}(x)+\mp@subsup{A}{1}{}(x),\mp@subsup{B}{0}{}(x)+\mp@subsup{B}{1}{}(x))
    U(x)= PolyMulti2( }\mp@subsup{A}{0}{}(x),\mp@subsup{B}{0}{}(x))
    Z(x) = PolyMulti2( }\mp@subsup{A}{1}{}(x),\mp@subsup{B}{1}{}(x))
    return }(U(x)+[Y(x)-U(x)-Z(x)]\mp@subsup{x}{}{\frac{n}{2}}+Z(x)\mp@subsup{x}{}{2\frac{n}{2}}
end
```


Running Time of the Modified Algorithm

$$
T(n)= \begin{cases}3 T(n / 2)+n, & \text { if } n>1 \\ 1, & \text { if } n=1\end{cases}
$$

By the Master Theorem for recurrences

$$
T(n)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.58 \cdots}\right)
$$

Much better than previous $\Theta\left(n^{2}\right)$ algorithms!

Remarks

- This algorithm can also be used for (long) integer multiplication
- Really designed by Karatsuba $(1960,1962)$ for that purpose.
- Response to conjecture by Kolmogorov, founder of modern probability, that this would require $\Theta\left(n^{2}\right)$.
- Similar to technique deeloped by Strassen a few years later to multiply $2 n \times n$ matrices in $O\left(n^{\log _{2} 7}\right)$ operations, instead of the $\Theta\left(n^{3}\right)$ that a straightforward algorithm would use.
- Takeaway from this lesson is that divide-and-conquer doesn't always give you faster algorithm. Sometimes, you need to be more clever.
- Coming up. An $O(n \log n)$ solution to the polynomial multiplication problem
- It involves strange recasting of the problem and solution using the Fast Fourier Transform algorithm as a subroutine
- The FFT is another classic D \& C algorithm that we will learn soon.

