
Pointers

Ritankar Mandal

Pointer

A pointer is a variable that contains the address of a variable.� �
1 int x = 1, y = 2, z[10];

2 int *ip; /* ip is a pointer to int */

3

4 ip = &x; /* ip now points to x */

5 y = *ip; /* y is now 1 */

6 *ip = 0; /* x is now 0 */

7 ip = &z[0]; /* ip now points to z[0] */� �
The & operator only applies to objects in memory: variables and
array elements. It cannot be applied to expressions, constants, or
register variables.

Pointer

Operators * and & bind more tightly than arithmetic operators, so
the following command takes whatever ip points at, adds 1, and
assigns the result to y .

y = *ip + 1

Each command below increments what ip points to.

*ip += 1

++*ip

(*ip)++

The parentheses are necessary in this last example; without them,
the expression would increment ip instead of what it points to,
because unary operators like * and ++ associate right to left.

Array

int a[10];

defines an array of size 10, – a block of 10 consecutive objects
named a[0], a[1], . . . , a[9]. a[i] refers to the i-th element of the
array. If pa is a pointer to an integer, declared as
int *pa;

then the assignment
pa = &a[0];

sets pa to contain the address of a[0].

Pointers and Function Arguments

� �
1 void swap(int x, int y) /* WRONG */

2 {

3 int temp;

4 temp = x;

5 x = y;

6 y = temp;

7 }� �

C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.
swap can’t affect the arguments a and b in the routine that called
it. The function above swaps copies of a and b.

Pointers and Function Arguments

� �
1 void swap(int x, int y) /* WRONG */

2 {

3 int temp;

4 temp = x;

5 x = y;

6 y = temp;

7 }� �
C passes arguments to functions by value, there is no direct way
for the called function to alter a variable in the calling function.
swap can’t affect the arguments a and b in the routine that called
it. The function above swaps copies of a and b.

Pointers and Function Arguments

� �
1 void swap(int *px, int *py) /* interchange *px and *py */

2 {

3 int temp;

4 temp = *px;

5 *px = *py;

6 *py = temp;

7 }� �
The way to obtain the desired effect is for the calling program to
pass pointers to the values to be changed:

swap(&a, &b);

Pointers and Function Arguments

� �
1 void inceaseI(int n)

2 {

3 n++;

4 printf("value (inside function) = %d \n", n);

5 }

6

7 int main()

8 {

9 int i = 1;

10 printf("value = %d \n", i);

11

12 inceaseI(i);

13 printf("value = %d \n", i);

14 return 0;

15 }� �

Pointers and Function Arguments� �
1 void inceaseIbyAddress(int *nAddress)

2 {

3 (*nAddress)++;

4 printf("value (inside function) = %d \n",

(*nAddress));

5 }

6

7 int main()

8 {

9 int i = 1;

10 printf("value = %d \n", i);

11

12 inceaseIbyAddress(&i);

13 printf("value = %d \n", i);

14 return 0;

15 }� �

Pointers and Arrays

a[i] can also be written as *(a+i). C converts a[i] to *(a+i).

As formal parameters in a function definition, the two are
equivalent.

int s[];

int *s;

Command-line Arguments
This is a way to pass command-line arguments to a program when
it begins executing. When main is called, it is called with two
arguments.

The first, called argc, for argument count, is the number of
command-line arguments the program was invoked with.

The second, argv, for argument vector, is a pointer to an array of
character strings that contain the arguments, one per string.� �

1 #include<stdio.h>

2 int main(int argc, char *argv[])

3 {

4 int i;

5 for (i = 1; i < argc; i++)

6 printf("%s, ", argv[i]);

7 return 0;

8 }� �

Address Arithmetic

If p is a pointer to some element of an array, then p++ increments
p to point to the next element, and p+=i increments it to point i
elements beyond where it currently does.

If p and q point to members of the same array, then relations like
==, ! =, <,<=, >,>=, etc., work properly. But the behavior is
undefined for arithmetic or comparisons with pointers that do not
point to members of the same array.

Address Arithmetic

If p is a pointer to some element of an array, then p++ increments
p to point to the next element, and p+=i increments it to point i
elements beyond where it currently does.

If p and q point to members of the same array, then relations like
==, ! =, <,<=, >,>=, etc., work properly. But the behavior is
undefined for arithmetic or comparisons with pointers that do not
point to members of the same array.

Address Arithmetic

A pointer and an integer may be added or subtracted.
p + n
means the address of the n-th object beyond the one p currently
points to. This is true regardless of the kind of object p points to;
n is scaled according to the size of the objects p points to, which is
determined by the declaration of p. If an int is four bytes, for
example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of
the same array, and p < q, then (q − p + 1) is the number of
elements from p to q inclusive.

All other pointer arithmetic is illegal. It is not legal to add two
pointers, or to multiply or divide or shift or mask them, or to add
float or double to them.

Address Arithmetic

A pointer and an integer may be added or subtracted.
p + n
means the address of the n-th object beyond the one p currently
points to. This is true regardless of the kind of object p points to;
n is scaled according to the size of the objects p points to, which is
determined by the declaration of p. If an int is four bytes, for
example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of
the same array, and p < q, then (q − p + 1) is the number of
elements from p to q inclusive.

All other pointer arithmetic is illegal. It is not legal to add two
pointers, or to multiply or divide or shift or mask them, or to add
float or double to them.

Address Arithmetic

A pointer and an integer may be added or subtracted.
p + n
means the address of the n-th object beyond the one p currently
points to. This is true regardless of the kind of object p points to;
n is scaled according to the size of the objects p points to, which is
determined by the declaration of p. If an int is four bytes, for
example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of
the same array, and p < q, then (q − p + 1) is the number of
elements from p to q inclusive.

All other pointer arithmetic is illegal. It is not legal to add two
pointers, or to multiply or divide or shift or mask them, or to add
float or double to them.

Character Pointers and Functions

char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

amessage is an array, just big enough to hold the sequence of
characters and ’\0’ that initializes it. Individual characters within
the array may be changed but amessage will always refer to the
same storage. On the other hand, pmessage is a pointer,
initialized to point to a string constant; the pointer may
subsequently be modified to point elsewhere, but the result is
undefined if you try to modify the string contents.

Character Pointers and Functions� �
1 /* strcpy: copy t to s; array subscript version */

2 void strcpy(char *s, char *t)

3 {

4 int i;

5 i = 0;

6 while((s[i] = t[i]) != ’\0’)

7 i++;

8 }

9 /* strcpy: copy t to s; pointer version */

10 void strcpy(char *s, char *t)

11 {

12 int i;

13 i = 0;

14 while((*s = *t) != ’\0’)

15 {

16 s++;

17 t++;

18 }

19 }� �

Character Pointers and Functions� �
1 /* strcpy: copy t to s; pointer version 2 */

2 void strcpy(char *s, char *t)

3 {

4 while ((*s++ = *t++) != ’\0’)

5 ;

6 }

7 /* strcpy: copy t to s; pointer version 3 */

8 void strcpy(char *s, char *t)

9 {

10 while (*s++ = *t++)

11 ;

12 }� �
The value of *t++ is the character that t pointed to before t was
incremented; the postfix ++ doesn’t change t until after this
character has been fetched. The net effect is that characters are
copied from t to s, up and including the terminating ’\0’.

Complicated Declarations

The difference between the following two illustrates the problem.

int *f();

int (*pf)();

f is a function returning pointer to int. pf is a pointer to function
returning int. * is a prefix operator and it has lower precedence
than (), so parentheses are necessary to force the proper
association.

Pointers to Functions

In C, a function itself is not a variable, but it is possible to define
pointers to functions, which can be assigned, placed in arrays,
passed to functions, returned by functions, and so on.� �

1 /* A normal function with an int parameter and void

return type */

2 void fun(int a)

3 {

4 printf("Value of a is %d\n", a);

5 }� �

Pointers to Functions� �
1 int main()

2 {

3 int i;

4 printf("Enter an integer: ");

5 scanf("%d", &i);

6

7 /* fun_ptr is a pointer to function fun() */

8 void (*fun_ptr)(int) = &fun;

9

10 /* The above line is equivalent of following two

11 void (*fun_ptr)(int);

12 fun_ptr = &fun; */

13

14 fun(i);

15 /* Invoking fun() using fun_ptr */

16 (*fun_ptr)(i);

17

18 return 0;

19 }� �

