
Functions

Ritankar Mandal



Functions

A program is just a set of definitions of variables and functions.

Communication between the functions is by arguments and values
returned by the functions, and through external variables.� �

1 return-type function-name(argument declarations)

2 {

3 declarations and statements

4

5 return expression;

6 }� �



� �
1 #include<stdio.h>

2 long int factorial(int n){

3 int i, fac = 1;

4 for(i=1; i<=n; i++)

5 fac = fac*i;

6 return fac;

7 }

8 int main(){

9 int n;

10 long int result;

11 printf("Enter a positive integer: ");

12 scanf("%d", &n);

13 if(n < 0){

14 printf("Enter a non-negative number.\n");

15 return 0;

16 }

17 result = factorial(n);

18 printf("Factorial of %d = %ld", n, result);

19 return 0;

20 }� �



External Variables

External variables are defined outside of any function, and are thus
potentially available to many functions.

Internal variables are the arguments and variables defined inside
functions.

Functions themselves are always external, because C does not allow
functions to be defined inside other functions.

Automatic variables are internal to a function; they come into
existence when the function is entered, and disappear when it is
left. External variables, on the other hand, are permanent, so they
can retain values from one function invocation to the next.



External Variables

External variables are defined outside of any function, and are thus
potentially available to many functions.

Internal variables are the arguments and variables defined inside
functions.

Functions themselves are always external, because C does not allow
functions to be defined inside other functions.

Automatic variables are internal to a function; they come into
existence when the function is entered, and disappear when it is
left. External variables, on the other hand, are permanent, so they
can retain values from one function invocation to the next.



External Variables

External variables are defined outside of any function, and are thus
potentially available to many functions.

Internal variables are the arguments and variables defined inside
functions.

Functions themselves are always external, because C does not allow
functions to be defined inside other functions.

Automatic variables are internal to a function; they come into
existence when the function is entered, and disappear when it is
left. External variables, on the other hand, are permanent, so they
can retain values from one function invocation to the next.



External Variables

External variables are defined outside of any function, and are thus
potentially available to many functions.

Internal variables are the arguments and variables defined inside
functions.

Functions themselves are always external, because C does not allow
functions to be defined inside other functions.

Automatic variables are internal to a function; they come into
existence when the function is entered, and disappear when it is
left. External variables, on the other hand, are permanent, so they
can retain values from one function invocation to the next.



Scope

The scope of a name is the part of the program within which the
name can be used.

For an automatic variable declared at the beginning of a function,
the scope is the function in which the name is declared.

Local variables of the same name in different functions are
unrelated. The same is true of the parameters of the function,
which are in effect local variables.

The scope of an external variable or a function lasts from the point
at which it is declared to the end of the file being compiled.



Scope

The scope of a name is the part of the program within which the
name can be used.

For an automatic variable declared at the beginning of a function,
the scope is the function in which the name is declared.

Local variables of the same name in different functions are
unrelated. The same is true of the parameters of the function,
which are in effect local variables.

The scope of an external variable or a function lasts from the point
at which it is declared to the end of the file being compiled.



Scope

The scope of a name is the part of the program within which the
name can be used.

For an automatic variable declared at the beginning of a function,
the scope is the function in which the name is declared.

Local variables of the same name in different functions are
unrelated. The same is true of the parameters of the function,
which are in effect local variables.

The scope of an external variable or a function lasts from the point
at which it is declared to the end of the file being compiled.



Scope

The scope of a name is the part of the program within which the
name can be used.

For an automatic variable declared at the beginning of a function,
the scope is the function in which the name is declared.

Local variables of the same name in different functions are
unrelated. The same is true of the parameters of the function,
which are in effect local variables.

The scope of an external variable or a function lasts from the point
at which it is declared to the end of the file being compiled.



How to update a local variable� �
1 #include<stdio.h>

2

3 void increase(int);

4 int increase_a(int);

5 int main()

6 {

7 int i;

8 i = 1;

9 printf("value = %d \n", i);

10

11 increase(i);

12 printf("value = %d \n", i);

13

14 i = increase_a(i);

15 printf("value = %d \n", i);

16

17 return 0;

18 }� �



How to update a local variable

� �
1 void increase(int n)

2 {

3 n++;

4 printf("value (inside function) = %d \n", n);

5 }

6

7 int increase_a(int n)

8 {

9 n++;

10 printf("value (inside function) = %d \n", n);

11 return n;

12 }� �



How to NOT update a global variable� �
1 #include<stdio.h>

2 void increase(int);

3 int j;

4

5 int main()

6 {

7 j = 1;

8 printf("value = %d \n", j);

9

10 increase(j);

11 printf("value = %d \n", j);

12 return 0;

13 }

14 void increase(int n)

15 {

16 n++;

17 printf("value (inside function) = %d \n", n);

18 }� �



How to update a global variable� �
1 #include<stdio.h>

2 void increase_a();

3 int j;

4

5 int main()

6 {

7 j = 1;

8 printf("value = %d \n", j);

9

10 increase_a();

11 printf("value = %d \n", j);

12 return 0;

13 }

14 void increase_a()

15 {

16 j++;

17 printf("value (inside function) = %d \n", j);

18 }� �



Recursion

C functions may be used recursively; that is, a function may call
itself either directly or indirectly.



� �
1 #include<stdio.h>

2 long int factorialRec(int n)

3 {

4 if (n>=1)

5 return n*factorialRec(n-1);

6 else

7 return 1;

8 }

9 int main()

10 {

11 int n;

12 long int result;

13

14 printf("Enter a positive integer: ");

15 scanf("%d", &n);

16

17 result = factorialRec(n);

18 printf("Factorial of %d = %ld", n, result);

19 return 0;

20 }� �



The C Preprocessor: File Inclusion

#include is the preferred way to tie the declarations together
from different source files for a large program.

Any source line of the form
#include‘‘filename’’

or
#include<filename>

is replaced by the contents of the file filename.



The C Preprocessor: Macro Substitution

A definition has the form
#define name replacementText

substitutes occurrences of the token name will be replaced by the
replacementText.

#define max(A,B)((A) > (B)?(A) : (B))
Thus the line
x = max(p+q, r+s);

will be replaced by the line
x = ((p+q) > (r+s) ? (p+q) : (r+s));

Some care also has to be taken with parentheses to make sure the
order of evaluation is preserved. Consider what happens when the
macro #define square(x) x * x

is invoked as square(z+1).



The C Preprocessor: Macro Substitution

A definition has the form
#define name replacementText

substitutes occurrences of the token name will be replaced by the
replacementText.

#define max(A,B)((A) > (B)?(A) : (B))
Thus the line
x = max(p+q, r+s);

will be replaced by the line
x = ((p+q) > (r+s) ? (p+q) : (r+s));

Some care also has to be taken with parentheses to make sure the
order of evaluation is preserved. Consider what happens when the
macro #define square(x) x * x

is invoked as square(z+1).



The C Preprocessor: Macro Substitution

A definition has the form
#define name replacementText

substitutes occurrences of the token name will be replaced by the
replacementText.

#define max(A,B)((A) > (B)?(A) : (B))
Thus the line
x = max(p+q, r+s);

will be replaced by the line
x = ((p+q) > (r+s) ? (p+q) : (r+s));

Some care also has to be taken with parentheses to make sure the
order of evaluation is preserved. Consider what happens when the
macro #define square(x) x * x

is invoked as square(z+1).


