Institute for Advancing Intelligence (IAI), TCG-CREST
Mid-Semesteral Examination
Ph.D Program Session: 2023-2024, Semester-I
Subject: Introduction to Programming and Data Structures

Date: 06. 10. 2023
Full Marks: 40
Time : 3 Hours

Instructions:

- Try not to answer more than Two questions. If done maximum two will be considered. The maximum you can score is 40 .
- Some of the questions require files. They can be downloaded from the digital version of the question paper kept in the course webpage.
- For submission, keep the names of the solution files as roll_x.c, where roll is your roll number and x is the problem number. Finally, upload them as a single zip file containing all necessary supporting files. Upload via usual submission link.
- Please keep your roll number and problem number in the header of each solution file.
- Assume inputs are correct to avoid unnecessary error handling. Language to be used: C.

1. Suppose you are given two square integer matrices of order n in two files matrix_a.txt and matrix_b.txt. You know that each row and column of the matrices contains only one non-zero element. In general, matrix multiplication requires $o\left(n^{3}\right)$ integer multiplication and $o\left(n^{2}\right)$ storage.
Your task is to store the matrices only in $o(n)$ storage and multiply them with $o\left(n^{2}\right)$ integer multiplication. Finally, display the result in the terminal. Show error message if the order of the matrices are different.

- Input: Two square matrices in the files matrix_a.txt and matrix_b.txt.
- Output: Display the result in the terminal.
- Note: Dynamic memory allocation is not necessary.
- Restriction: You can not take any storage more than $o(n)$ for doing any purpose.

2. Given a file words.txt of words at random order, write a C program to sort the words in the lexicographical order (dictionary order) and output the sorted words in the file sorted_words.txt.

- Input: a file words.txt. Each line is a string of maximum length 30 .
- Output: a file sorted_words.txt, containing sorted words.
- Restriction: only strcpy function can be used from <string.h> library.

3. Now, write a function that moves the last node to the front in a given Singly Linked List.

- Input: Give at least the following choices to the user
(a) add element to the linked list
(b) move node from the last to the front.
- Output: Display the list after each operation in the terminal.
- Note: In assignment 04, you were asked to implement some functions related to singly linked list. You can use that code.
- Restrictions: While moving a node, you can not change the value in the nodes.

4. Write a C program that takes a text file sentence.txt that contains a single line of text and reverses the order of the words within it. Ensure the program operates under the assumption that the line comprises no more than 1000 characters. The space character serves as the delimiter between individual words.

- Input: The file sentence.txt
- Output: Display the modified sentence in the terminal.

Introduction to Programming and Data Structures
Mid-Semestal Lab Test
PhD Coursework, Semester-I, 2023-24
Sample Inputs and Outputs:

Question 1:
$\left.\begin{array}{|l|l|lll|}\hline \text { Input: matrix_a.txt } & \text { Input: : matrix_b.txt } & \text { Output } \\ \hline 4 & 4 & 4 & & 4 \\ 0 & 2 & 0 & 0 & 0\end{array}\right)$

Question 4:

Input	
I promise that I will definitely write a paper every year, either for a journal or a conference.	
Output	
conference. a or journal a for either year, every paper a write definitely will I that promise I	

Question 2: On next page

Input Part-I	Input Part-II	Output Part-I	Output Part-II
the	their	about	new
and	time	all	no
is	if	an	now
of	will	and	number
it	way	any	
in	about	are	on
you	many	as	one
that	then	at	or
he	them	be	other
was	write	been	out
for	would	but	over
on	like	by	people
are	so	call	said
with	these	can	see
as	her	come	she
ice	long	could	side
his	make	day	so
they	thing	did	some
be	see	do	sound
at	him	down	than
one	two	each	that
have	has	find	the
this	look	first	their
from	more	for	them
or	day	from	then
had	could	go	there
by	go	had	these
hot	come	has	they
word	did	have	thing
but	my	he	this
what	sound	her	time
some	no	him	two
we	most	his	up
can	number	hot	use
out	who	how	was
other	over	ice	water
were	know	if	way
all	water	in	we
there	than	is	were
when	call		what
up	first	know	when
use	people	like	which
your	may	long	who
how	down	look	will
said	side	make	with
an	been	many	word
each	now	may	would
she	find	more	write
which	any	most	you
do	new	my	your

