
Types, Operators and Expressions

Ritankar Mandal

Data Types

Type Description Size (bits) Format
specifier

char holds one character 8 %c

int holds one integer 16 %d

float single-precision floating point 32 %f

double double-precision floating point 64 %lf

Qualifiers: short & long

Qualifiers short and long can be applied to integers.� �
1 short int sh;

2 long int counter;� �
The sizes depend on the compiler for its own hardware, subject to
the restriction that

1. short and int are at least 16 bits,

2. long is at least 32 bits,

3. short is no longer than int, which is no longer than long.

Qualifiers: signed & unsigned

1. signed variables can be positive, zero or negative. So they
have the range between (−2n−1) and 2n−1 − 1 (in a two’s
complement machine), where n is the number of bits in the
type. E.g., signed chars have values between −128 and 127

2. unsigned numbers are always positive or zero. So they obey
the laws of arithmetic modulo 2n, where n is the number of
bits in the type. So, for instance, if chars are 8 bits, unsigned
char variables have values between 0 and 255.

Declaration

All variables must be declared before use.� �
1 int lower;

2 int upper;

3 char c;

4 char line[1000];� �
You can combine all the variables of the same type to a single line.� �

1 int lower, upper;

2 char c, line[1000];� �

Declaration & Initialization

� �
1 /*Declaration*/

2 char c;

3 int i;

4 /*Initialization*/

5 c = ’a’;

6 i = 0;� �
A variable may also be initialized in its declaration.� �

1 char c = ’a’;

2 int i = 0;� �

Qualifier: const

The qualifier const can be applied to the declaration of any
variable to specify that its value will not be changed. For an array,
the const qualifier says that the elements will not be altered.

The following code will generate an error (implementation-defined).� �
1 const msg[] = "Hello";

2 const int i = 10;

3 printf("i = %d\n", i);

4 i = 20; // Trying to change the value of a const variable

5 printf("i = %d\n", i);� �

Operators: Arithmetic, Relational and Logical

Binary arithmetic operators are +,−, ∗, /,% (the modulus
operator). The % operator cannot be applied to a float or
double.

Example: If a year is divisible by 4 but not by 100, or by both 100
and 400 is a leap year.� �

1 if(((year%4 == 0) && (year%100 != 0)) || (year%400 == 0))

2 printf("%d is a leap year. \n", year);

3 else

4 printf("%d is not a leap year. \n", year);� �
Relational operators are >,>=, <,<=,==, ! =. Logical operators
are && and ||.

Relational operators have lower precedence than arithmetic
operators, so i < lim − 1 is taken as i < (lim − 1).

Integer division

Integer division truncates any fractional part.

Check the following example to find out what erroneous results
might be generated by using it.� �

1 int a = 1, b = 2;

2 float c = 1.0, d = 2.0;

3 float e, f, g, h;

4

5 e = a/b; /* Integer Division */

6 printf("a/b = %f\n", e);

7 f = c/b;

8 printf("c/b = %f\n", f);

9 g = a/d;

10 printf("a/d = %f\n", g);

11 h = (float)a/b; /* Type casting Integer to Float */

12 printf("(float)a/b = %f\n", h);� �

A common mistake

� �
1 int a = 9, b = 0;

2 if(b = 1)

3 printf("b = %d.\n", b);

4 if((a == 10) || (b = 2))

5 printf("a = %d. b = %d.\n", a, b);� �

Expressions connected by && or || are evaluated from left to right,
and evaluation stops as soon as the truth or falsehood of the result
is known.

A common mistake

� �
1 int a = 9, b = 0;

2 if(b = 1)

3 printf("b = %d.\n", b);

4 if((a == 10) || (b = 2))

5 printf("a = %d. b = %d.\n", a, b);� �
Expressions connected by && or || are evaluated from left to right,
and evaluation stops as soon as the truth or falsehood of the result
is known.

Type Conversions

When an operator has operands of different types, they are
converted to a common type according to a small number of rules.

A “narrower” operand is converted into a “wider” one without
losing information automatically. Assigning a longer integer type to
a shorter, or a float to an int, may draw a warning, but they are
not illegal.
float to int causes truncation of any fractional part. In double

to float conversion, the value is rounded or truncated depending
on the implementation.

char is a small integer and can be used in arithmetic expressions.� �
1 char s[] = "329";

2 int i, n = 0;

3 for(i = 0; s[i] >= ’0’ && s[i] <= ’9’; ++i)

4 n = 10 * n + (s[i] - ’0’);

5 printf("n = %d \n", n);� �

Increment and Decrement Operators

++ n (prefix): Increments n before its value is used.
n ++ (postfix): Increments n after its value is used.� �

1 int n, x;

2 n = 5;

3 x = n++;

4 printf("n = %d, x = %d\n", n, x);

5 n = 5;

6 x = ++n;

7 printf("n = %d, x = %d\n", n, x);� �

Bitwise Operators

Operator Description

& bitwise AND

| bitwise inclusive OR

ˆ bitwise exclusive OR

<< left shift

>> right shift

∼ one’s complement (unary)

These can only be applied to integral operands, i.e., char,
short, int, long, whether signed or unsigned.

Assignment Operators

i += 2 is the same as i = i + 2.

x *= y + 1 is the same as x = x * (y + 1), but not x = x *

y + 1.

Conditional Expressions

In the expression

expr1 ? expr2 : expr3

expr1 is evaluated first. If it is non-zero (true), then expr2 is
evaluated, else expr3 is evaluated.� �

1 /* z = max(a, b) */

2 if (a > b)

3 z = a;

4 else

5 z = b;� �
is the same as� �

1 z = (a > b) ? a : b; /* z = max(a, b) */� �

Precedence and Associativity of Operators

Operators on the same line have the same precedence; rows are in
order of decreasing precedence. For example, ∗, /, % all have the
same precedence, which is higher than that of binary + and −.

The “operator” () refers to function call. The operators − > and .
are used to access members of structures, along with sizeof (size of
an object), ∗ (indirection through a pointer) and & (address of an
object).

Unary operators have higher precedence than the binary forms.

Precedence and Associativity of Operators
Operators Associativity

(), [], − >, . left to right

!, ∼, ++, −−, +, −, ∗, (type) sizeof right to left

∗, /, % left to right

+, − left to right

<<, >> left to right

<, <=, >, >= left to right

==, ! = left to right

& left to right

ˆ left to right

| left to right

&& left to right

|| left to right

?: right to left

=, + =, − =, ∗ =, / =, % =, & =, ∼=,
| =, <<=, >>=

right to left

, left to right

Associativity of Operators

Associativity is used when two operators of same precedence
appear in an expression. Associativity can be either Left to Right
or Right to Left.� �

1 float a = 100.0 / 10.0 * 10.0;

2 float b = 10.0 * 10.0 / 100.0;

3 printf("a = %f, b = %f\n", a, b);� �

Associativity of Operators

� �
1 int a = 10, b = 20, c = 30;

2 if (c > b > a)

3 printf("TRUE");

4 else

5 printf("FALSE");� �

Associativity of ‘>’ is left to right, so (c > b > a) is treated as
((c > b) > a). Therefore the expression becomes ((30 > 20) > 10)
which becomes (1 > 10).

Associativity of Operators

� �
1 int a = 10, b = 20, c = 30;

2 if (c > b > a)

3 printf("TRUE");

4 else

5 printf("FALSE");� �
Associativity of ‘>’ is left to right, so (c > b > a) is treated as
((c > b) > a). Therefore the expression becomes ((30 > 20) > 10)
which becomes (1 > 10).

Precedence and Associativity of Operators

x = f () + g();. f () may be evaluated before g() or vice versa.� �
1 #include <stdio.h>

2 int i = 0;

3 int f(){

4 i = 1;

5 return i;

6 }

7 int g(){

8 i = 2;

9 return i;

10 }

11 int main(){

12 int a = f() + g();

13 printf("%d ", i);

14 return 0;

15 }� �

Conclusion

The moral is that writing code that depends on order of evaluation
is a bad programming practice in any language. Naturally, it is
necessary to know what things to avoid, but if you don’t know how
they are done on various machines, you won’t be tempted to take
advantage of a particular implementation.

