
Structures

Ritankar Mandal

Structure

A collection of one or more variables, possibly of different types,
grouped together under a single name for convenient handling.� �

1 struct complex

2 {

3 float x;

4 float y;

5 };� �
• struct introduces a structure declaration.

• The variables named in a structure are called members. The
structure member operator “.” connects the structure name and
the member name.

Structure: Declaration & Initialization

Declaration: struct complex z1, z2;

Initialization of members: z1.x = 1.2; z1.y = 3.2;

Declaration & Initialization of members:
struct complex z2 = {2.2, 2.8};

Structure: Declaration & Initialization using a Function

� �
1 /* make a complex number from x and y components */

2 struct complex getcomplex(float x, float y)

3 {

4 struct complex temp;

5 temp.x = x;

6 temp.y = y;

7 return temp;

8 }� �
There is no conflict between the argument name and the member
with the same name e.g, x and y .

Structures & Functions

� �
1 struct complex complex_add(struct complex z1, struct

complex z2)

2 {

3 struct complex result;

4 result.x = z1.x + z2.x;

5 result.y = z1.y + z2.y;

6 return temp;

7 }� �
Do complex sub, complex multiplication.

Array of Structures

� �
1 #include<stdio.h>

2

3 struct complex

4 {

5 float x;

6 float y;

7 } complexNumbers[10];

8

9 int main()

10 {

11 complexNumbers[1].x = 2.3; complexNumbers[1].y = 3.3;

12 printf("complexNumbers[%d] = (%f, %f) \n", 1,

complexNumbers[1].x, complexNumbers[1].y);

13 return 0;

14 }� �

Size of Structures� �
1 #include<stdio.h>

2 struct collection{

3 int p;

4 float q;

5 char r;

6 };

7 int main(){

8 int a;

9 float b;

10 char c;

11 struct collection d;

12

13 printf("Size of of a: %u\n", sizeof(a));

14 printf("Size of of b: %u\n", sizeof(b));

15 printf("Size of of c: %u\n", sizeof(c));

16 printf("Size of of d: %u\n", sizeof(d));

17 return 0;

18 }� �

Size of Structures

The sizeof operator for a struct is not always equal to the sum
of sizeof of each individual member. When applied to a structur,
the result is the number of bytes in the object, including any
required padding.

Pointer to Structures

Structure pointers are just like pointers to ordinary variables.� �
1 struct complex z, *pz;

2

3 z.x = 1.2; z.y = 3.2;

4 pz = &z;

5

6 printf("The number is (%f, %f) \n", (*pz).x, (*pz).y);

7 printf("The number is (%f, %f) \n", pz->x, pz->y);� �
The parentheses are necessary in (*pp).x because the precedence
of the structure member operator . is higher then *. The
expression *pp.x means *(pp.x), which is illegal here because x is
not a pointer.

Typedef

typedef is used for creating new data type names.

typedef int Length;

makes the name Length a synonym for int.

Length can be used in declarations, casts, etc., in exactly the
same ways that the int type can be:

Length len, maxlen;

Length *lengths[];

Typedef

typedef char *String;

makes String a synonym for char * or character pointer, which
may then be used in declarations and casts.

String p, lineptr[MAXLINES], alloc(int);

int strcmp(String, String);

p = (String) malloc(100);

The type being declared in a typedef appears in the position of a
variable name, not right after the word typedef.

Typedef of Structures� �
1 #include<stdio.h>

2

3 struct complex

4 {

5 float x;

6 float y;

7 };

8

9 typedef struct complex Comp;

10

11 int main()

12 {

13 Comp z1, z2;

14 z1.x = 1.2; z1.y = 3.2;

15 printf("z1.x = %f, z1.y = %f\n", z1.x, z1.y);

16

17 return 0;

18 }� �

Typedef of Structures� �
1 #include<stdio.h>

2

3 typedef struct complex

4 {

5 float x;

6 float y;

7 } Comp;

8

9 int main()

10 {

11 Comp z1, z2;

12 z1.x = 1.2; z1.y = 3.2;

13 printf("z1.x = %f, z1.y = %f\n", z1.x, z1.y);

14

15 return 0;

16 }� �

Self-referential Structures

� �
1 struct node

2 {

3 int val;

4 struct node *next;

5 };� �
It is illegal for a structure to contain an instance of itself. But

struct node *next;

declares next to be a pointer to a node, not a node itself.

� �
1 #include<stdio.h>

2 #include<stdlib.h>

3

4 struct node{

5 int val;

6 struct node *next;

7 };

8

9 int main(){

10 struct node *pnode1;

11

12 pnode1 = (struct node *)malloc(sizeof(struct node));

13 pnode1->val = 1;

14 printf("%d\n", pnode1->val);

15 pnode1->next = (struct node *)malloc(sizeof(struct node));

16

17 pnode1->next->val = 2;

18 printf("%d\n", pnode1->next->val);

19 pnode1->next->next = NULL;

20 return 0;

21 }� �

� �
1 int main()

2 {

3 struct node *pnode1, *pnode2;

4

5 pnode1 = (struct node *)malloc(sizeof(struct node));

6 pnode1->val = 1;

7 printf("%d\n", pnode1->val);

8

9 pnode2 = pnode1->next;

10 pnode2 = (struct node *)malloc(sizeof(struct node));

11 pnode2->val = 2;

12 printf("%d\n", pnode2->val);

13 pnode2->next = NULL;

14

15 return 0;

16 }� �

