
Structures

Ritankar Mandal

Structure

A collection of one or more variables, possibly of different types,
grouped together under a single name for convenient handling.� �

1 struct complex

2 {

3 float x;

4 float y;

5 };� �
• struct introduces a structure declaration.

• The variables named in a structure are called members. The
structure member operator “.” connects the structure name and
the member name.

Structure: Declaration & Initialization

Declaration: struct complex z1, z2;

Initialization of members: z1.x = 1.2; z1.y = 3.2;

Declaration & Initialization of members:
struct complex z2 = {2.2, 2.8};

Structure: Declaration & Initialization using a Function

� �
1 /* make a complex number from x and y components */

2 struct complex getcomplex(float x, float y)

3 {

4 struct complex temp;

5 temp.x = x;

6 temp.y = y;

7 return temp;

8 }� �
There is no conflict between the argument name and the member
with the same name e.g, x and y .

Structures & Functions

� �
1 struct complex complex_add(struct complex z1, struct

complex z2)

2 {

3 struct complex result;

4 result.x = z1.x + z2.x;

5 result.y = z1.y + z2.y;

6 return temp;

7 }� �
Do complex sub, complex multiplication.

Array of Structures

� �
1 struct complex

2 {

3 float x;

4 float y;

5 } complexNumbers[10];� �

Pointer to Structures

Structure pointers are just like pointers to ordinary variables.� �
1 struct complex z, *pz;

2

3 z.x = 1.2; z.y = 3.2;

4 pz = &z;

5

6 printf("The number is (%f, %f) \n", (*pz).x, (*pz).y);

7 printf("The number is (%f, %f) \n", pz->x, pz->y);� �
The parentheses are necessary in (*pp).x because the precedence
of the structure member operator . is higher then *. The
expression *pp.x means *(pp.x), which is illegal here because x is
not a pointer.

Self-referential Structures

� �
1 struct node

2 {

3 int val;

4 struct node *next;

5 };� �

Typedef

typedef is used for creating new data type names.

typedef int Length;

makes the name Length a synonym for int.

The type Length can be used in declarations, casts, etc., in
exactly the same ways that the int type can be:

Length len, maxlen;

Length *lengths[];

