Integer division

© 00 NO O WN -

e
N —~ O

Integer division truncates any fractional part.

Check the following example to find out what erroneous results
might be generated by using it.

-

int a =1, b = 2;
float ¢ = 1.0, d = 2.0;
float e, £, g, h;

e = a/b; /* Integer Division */
printf("a/b = %f\n", e);

f = c/b;
printf("c/b = %f\n", f);
g = a/d;

printf("a/d = %f\n", g);
h = (float)a/b; /* Type casting Integer to Float */
printf (" (float)a/b = %f\n", h);

A common mistake

-

int a =9, b = 0;
if(b = 1)
printf("b = %d.\n", b);
if((a == 10) || (b = 2))
printf("a = %d. b = %d.\n", a, b);

o> W -

A common mistake

o> W -

-

int a = 9, b = 0;
if(b = 1)

printf("b = %d.\n", b);
if((a == 10) || (b = 2))

printf("a = %d. b = Jd.\n", a, b);

Expressions connected by &4& or || are evaluated from left to right,
and evaluation stops as soon as the truth or falsehood of the result

Is known.

Type Conversions

OO WD -

When an operator has operands of different types, they are
converted to a common type according to a small number of rules.

A “narrower’ operand is converted into a “wider’ one without
losing information automatically. Assigning a longer integer type to
a shorter, or a float to an int, may draw a warning, but they are
not illegal.

float to int causes truncation of any fractional part. In double
to float conversion, the value is rounded or truncated depending
on the implementation.

char is a small integer and can be used in arithmetic expressions.

4)

char s[] = "329";

int 1, n = 0;

for(i = 0; s[i] >= ’0’ && s[i] <= ’97; ++i)
n =10 * n + (s[i] - ’0’);

printf("n = %d \n", n);

Increment and Decrement Operators

+ + n (prefix): Increments n before its value is used.
n+ + (postfix): Increments n after its value is used.

-

1 [int n, x;

2 |n = b;

3 | X = nt+;

4 |printf("n = %d, x = %d\n", n, x);
5 |n = b;

6 | x = ++n;

7 |printf("n = %d, x = %d\n", n, x);

Bitwise Operators

Operator Description

& bitwise AND
| bitwise inclusive OR
" bitwise exclusive OR

<< left shift
>> right shift
~ one's complement (unary)

These can only be applied to integral operands, i.e., char,
short, int, long, whether signed or unsigned.

Assignment Operators

i += 2 i1sthesameasi = i + 2.

x *= y + 1is the same as x
y + 1.

x * (y + 1), but not x

X

*

Conditional Expressions

In the expression
exprl 7 expr2 : expr3

exprl is evaluated first. If it is non-zero (true), then expr2 is
evaluated, else expr3 is evaluated.

B
1 |/* z = max(a, b) *x/)
2 |if (a > b)
3 Z = a;
4 | else
5 Z = b;

- J

Is the same as

1 [z = (a>b) ?a: b; /¥ z=max(a, b) *x/ J

Precedence and Associativity of Operators

Operators on the same line have the same precedence; rows are in
order of decreasing precedence. For example, %, /, % all have the
same precedence, which is higher than that of binary + and —.

The “operator” () refers to function call. The operators — > and .
are used to access members of structures, along with sizeof (size of
an object), * (indirection through a pointer) and & (address of an

object).

Unary operators have higher precedence than the binary forms.

Precedence and Associativity of Operators

Operators Associativity
O, [, —>, . left to right
|, ~, +4+, ——, +, —, %, (type) sizeof right to left
x, /, % left to right
+, — left to right
<<, >> left to right
<, <=, >, >= left to right
==, | = left to right
& left to right
" left to right
| left to right
&& left to right
| left to right
7 right to left
= += —=x=, /= %=, &=, ~=, | right to left
| =, <<=, >>=

left to right

Associativity of Operators

Associativity is used when two operators of same precedence
appear in an expression. Associativity can be either Left to Right
or Right to Left.

g

1 | float a = 100.0 / 10.0 * 10.0;

float b = 10.0 * 10.0 / 100.0;

3 |printf("a = %f, b = %f\n", a, b);
g

)

Associativity of Operators

-

int a = 10, b = 20, ¢ = 30;
if (c > b > a)

printf ("TRUE") ;
else

printf ("FALSE") ;

o> W -

Associativity of Operators

-

int a = 10, b = 20, ¢ = 30;
if (¢ > b > a)

printf ("TRUE") ;
else

printf ("FALSE") ;

o> W -

-

Associativity of ‘>" is left to right, so (c > b > a) is treated as
((c > b) > a). Therefore the expression becomes ((30 > 20) > 10)
which becomes (1 > 10).

Precedence and Associativity of Operators

© 00 NO O WIN B+~

i e e e
a s WD - O

x = f() 4+ g();- f() may be evaluated before g() or vice versa.

-

#include <stdio.h>
int 1 = O;

int £
1 =1;
return 1i;
+
int gO{
1 = 2;
return 1i;
+

int main(){
int a = f() + g0;
printf("%d ", i);
return O;

Conclusion

The moral is that writing code that depends on order of evaluation
Is a bad programming practice in any language. Naturally, it is
necessary to know what things to avoid, but if you don't know how
they are done on various machines, you won't be tempted to take
advantage of a particular implementation.

