Types, Operators and Expressions

Ritankar Mandal

Data Types

Type Description Size (bits) | Format
specifier
char holds one character 8 %c
int holds one integer 16 %d
float | single-precision floating point 32 %f
double | double-precision floating point 64 %lIf

Qualifiers: short & long

Qualifiers short and long can be applied to integers.

1 | short int sh;
2 | long int counter;

The sizes depend on the compiler for its own hardware, subject to
the restriction that

1. short and int are at least 16 bits,
2. long is at least 32 bits,

3. short is no longer than int, which is no longer than long.

Qualifiers: signed & unsigned

1. signed variables can be positive, zero or negative. So they
have the range between (—2"71) and 2”71 — 1 (in a two's
complement machine), where n is the number of bits in the
type. E.g., signed chars have values between —128 and 127

2. unsigned numbers are always positive or zero. So they obey
the laws of arithmetic modulo 2”7, where n is the number of
bits in the type. So, for instance, if chars are 8 bits, unsigned
char variables have values between 0 and 255.

Declaration

All variables must be declared before use.

.
int lower;

int upper;
char c;
char 1ine[1000];

D WO N -

.

You can combine all the variables of the same type to a single line.

1 | int lower, upper;
2 | char ¢, 1line[1000];

Declaration & Initialization

/*Declaration*/
char c;

int 1i;
/*Initializationx*/
c = ’a’;

1 = 0;

O Ok WN -

N

A variable may also be initialized in its declaration.

1l [char ¢ = ’a’;
2 |int 1 = 0O;

Qualifier: const

o> W -

The qualifier const can be applied to the declaration of any
variable to specify that its value will not be changed. For an array,
the const qualifier says that the elements will not be altered.

The following code will generate an error (implementation-defined).

-

-

const msgl[] = "Hello";

const int 1 = 10;

printf("i = Jd\n", 1i);

i = 20; // Trying to change the value of a const variable
printf("i = Jd\n", i);

N

Operators: Arithmetic, Relational and Logical

Binary arithmetic operators are +, —, x, /, % (the modulus
operator). The % operator cannot be applied to a float or

double.

Example: If a year is divisible by 4 but not by 100, or by both 100
and 400 is a leap year.

4)

1 | if(((year%4 == 0) && (year%100 '= 0)) || (year’%400 == 0))
2 printf("%d is a leap year. \n", year);
3 | else
4 printf ("/%d is not a leap year. \n", year);
Relational operators are >, >=, <, <=,==,! =. Logical operators
are && and ||.

Relational operators have lower precedence than arithmetic
operators, so i < lim — 1 is taken as i < (/im —1).

