Introduction to Computer Programming and Data Structures Assignment 07 Maximum Marks: 120 Submission Deadline: 2022-Nov-19 Topic: Polynomial Operations ## Assignment problem # AP0701 **Polynomial operations**: Given two polynomials $f(x) = \sum_{i=0}^{n} a_i . x^i$, $g(x) = \sum_{i=0}^{m} b_i . x^i$ of degree n and m respectively, find addition/subtraction/division/multiplication of them. You should have at least the following operations. - $poly_A \leftarrow poly_init(n)$: Given a non-negative integer n, it initializes a polynomial structure $poly_A$. Here it allocates memory for the coefficients and the degree in $poly_A$. Consider the coefficients as float variables. - $b \leftarrow poly_display(poly_A)$: Given a polynomial $poly_A$, it should display the polynomial. Output should be in such a way that all of your friends can understand. Finally it returns a status bit b (b = degree of the polynomial if success, else return -1, in case of failure). The coefficients must be displayed up to 2 decimal places. - $b \leftarrow poly_free(poly_A)$: Given a polynomial $poly_A$, it makes the memory allocated for the coefficients free. Finally, it returns a status bit b (b = degree of the polynomial if success, else return -1, in case of failure). - $poly_C \leftarrow poly_add(poly_A, poly_B)$: Given two polynomials $poly_A$ and $poly_B$, it outputs $poly_C = poly_A + poly_B$ and displays $poly_C$ in the terminal. - $poly_C \leftarrow poly_sub(poly_A, poly_B)$: Given two polynomials $poly_A$ and $poly_B$, it outputs $poly_C = poly_A poly_B$ and displays $poly_C$ in the terminal - $PoliDivRes \leftarrow poly_div(poly_A, poly_B)$: Given two polynomials $poly_A$ and $poly_B$, it outputs PoliDivRes which stores $poly_R$ (remainder) and $poly_Q$ (quotient) such that $poly_A = poly_B * poly_Q + poly_R$ and displays $poly_R$ and $poly_Q$ in the terminal - $poly_C \leftarrow poly_mult(poly_A, poly_B)$: Given two polynomials $poly_A$ and $poly_B$, it outputs $poly_C = poly_A * poly_B$ and displays $poly_C$ in the terminal. - $poly_C \leftarrow poly_mult_dnc(poly_A, poly_B)$: Given two polynomials $poly_A$ and $poly_B$, it outputs $poly_C = poly_A * poly_B$ using divide-and-conquer algorithm and displays $poly_C$ in the terminal. **Input format:** A file containing (3k + 1) lines. - Line 1 contains the number of test cases, i.e., k. - Each test case has three lines: - 1. line 1 contains n m op, separated by space, where $op \in \{+, -, *, /\}$, and n and m are degrees of the input polynomials. - 2. line 2 contains space separated coefficients of the 1st polynomial with degree n as $a_n a_{n-1} \dots a_0$. - 3. line 3 contains space separated coefficients of the 2nd polynomial with degree m similar to the above. Output format: Any Readable format. For multiplication, output results from both poly_mult_and poly_mult_dnc. ## Notes: - poly_A, poly_B, poly_C, etc., are structures that store polynomials (i.e., store the coefficient and degree). - Free the memories occupied by the polynomials, if any, before terminating the program at any stage. $$[10+10+10+10+10+25+25+30+20]$$