tcg crest |Institute for Advancing Intelligence, TCG CREST

(TCG Centres for Research and Education in Science and Technology)

Inventing Harmonious Future

Introduction to Computer Programming and Data Structures
Assignment 06

Maximum Marks: 200 Submission Deadline: 2022-Sep-30
Bonus: 20 — programming style and efficiency
Topic: Lists and Sets

Assignment problem # AP0601

Complex number system: Write a structure COMPLEX having two components— x
and y as typedef struct complex { float x; float y; }COMPLEX;.

Thus a structure COMPLEX z=x+iy will have a real value x and an imaginary value y.
Now, do the following operations systematically one-by-one.

1. z < complex_init(x,y): takes a real-imaginary pairs of floating numbers, allocates
memory for a complex structure and initiate its values with the received values.

2. z3 < complex_add(z, z9): Takes two COMPLEX structures and a return a new com-
plex structure that holds the sum of the given complex numbers. Thus z3 = 2z; + 2z5.

3. z3 < complex_sub(zy, z2): Takes two COMPLEX structures and a return a new com-
plex structure that holds the subtraction of z from z;. Thus z3 = 21 — 2s.

4. z3 < complex_mult(z1, z5): Takes two COMPLEX structures and a return a new
complex structure that holds the multiplication of the given complex numbers. Thus
Z3 = 21 * Zo9.

5. z3 < complex_div(zy, z3): Takes two COMPLEX structures and a return a new com-
plex structure that holds the division z3 = z1/29. Thus z3 = 21/ 2.

6. b < complex_print(z): Takes a COMPLEX structure prints the element in the form
“x + 1y”. Return a success bit b in the end of successful printing.

7. Write your own main function to tests the above functions.
e For inputs and outputs, follow #AP0303

[20]

Assignment problem # AP0602

Lists: Create a linked list of complex numbers. Each node is structure as
typedef struct complex node { COMPLEX z; struct complex node * next; }COMPLEX NODE;.
Now, do the followings.

1. N < Create_Complex_Node(): That creates a node and returns the address of the
node.

2. b« List_Add(L, z): Take the address of a list L and add an element z in the end of
the list L. It returns a bit that indicates success/failure. (L can be considered as head
of the list)

3. b« List_Push(L,z): Take the address of a list L and add an element z in front of the
list L. It returns a bit that indicates success/failure.

4. b < List_Delete(L, z): Take the address of a list L and delete the element z if exists.
It returns a bit that indicates success/failure.

5. b < Show_-Complex_List(L): Take the address of a list L and prints the elements
present in the list. It returns a bit b that indicates success/failure.

6. b < List_Search(L, z): Take the address of a list L and search the element z. It
returns b = 1 if exists, b = 0 if does not exist and b = —1 if fails to search.

7. b < List_Sort(L): Take the address of a list L and sort the elements according to the
distances from origin.

8. b < List_Insert(L,z,pos.n): Insert an complex number z in the pos_n' position in
the list. It returns a bit that indicates success/failure.

9. o < List_Pop(L): Take the address of a list L and delete the element z from the front
of the linked list. It returns a bit that indicates success/failure.

10. b < List_Reverse(L): Take the address of a list L, rearrange the values in reverse
order. It returns a bit b that indicates success/failure.

11. L3 « List_Concatenate(Ly, Lo): Takes two lists Ly and Lo, create a new empty list
L3. Rearrange the lists so that L contains the complex numbers from L; and L.

12. [< List_Length(L): Returns the length of the linked list L.

13. z < List_Maxz(L): Returns the complex number z having maximum distance from
the origin.

14. z < List_Min(L): Returns the complex number z having minimum distance from the
origin.

15. Ly < List_union(Ly, Lo): It takes two linked lists S; and Ss and returns a new list
S3 that contains all elements from L; and L, without repeat. Note that concatenate
may return a list having nodes with same complex numbers. Even any list can have
repeated complex number. Thus L3 < L; U Ly

16. L3 < List_intersection(Ly, Ly): It takes two linked lists L; and Ly and returns a new
list L3 which contains those complex numbers which are contained in both given lists.

T‘hllS7 L3 — L1 N L2

17. L3 < List_dif ference(Ly, Ly): It takes two linked lists L; and Ly and returns a new
list L3 which contains those complex numbers which are contained in L; but not in
L2. L3 — L1 \ L2

e Write your own main function having a meaningful menu to test the above operations.

200]

