
Institute for Advancing Intelligence, TCG CREST
(TCG Centres for Research and Education in Science and Technology)

info.iai@tcgcrest.org
ADMIT CARD FOR PH.D. ENTRANCE EXAMINATION 2022

Candidate’s Name: ANJALI

Candidate’s Address:
c/o Santram Dewangan pragati
vihar colony santoshi nagar
raipur
raipur
PIN: 492001
India

Registration Number: IAIKOL22-612

Date of Birth: 1995-12-06
Photo Id Card Type: Aadhaar/ Voter ID/ Passport/ PAN

Photo Id Card No.:
Email Id: anjali.dewangan1@gmail.com

Test Date: May 28, 2022 (14:00 – 17:30 IST) Test Venue:

Signature of the
Candidate: ONLINE

READ ALL THE INSTRUCTIONS CAREFULLY

 1. This Admit Card is not transferable.

 2. In case of any discrepancy in the scanned photo/signature, the candidate should immediately
 inform the Admission committee by sending an email to info.iai@tcgcrest.org.

 3. For all the answers, please use pen with black/blue ink; for diagrams and rough works,
 you can use lead pencils.

 4. Candidates have to send a scanned copy of the signed admit card along with their scanned
copy of answer scripts..

Introduction to Computer Programming and Data Structures

Assignment 06

Maximum Marks: 200 Submission Deadline: 2022-Sep-30
Bonus: 20 – programming style and efficiency
Topic: Lists and Sets

Assignment problem # AP0601

Complex number system: Write a structure COMPLEX having two components– x
and y as typedef struct complex { float x; float y; }COMPLEX;.
Thus a structure COMPLEX z=x+iy will have a real value x and an imaginary value y.
Now, do the following operations systematically one-by-one.

1. z ← complex init(x, y): takes a real-imaginary pairs of floating numbers, allocates
memory for a complex structure and initiate its values with the received values.

2. z3 ← complex add(z1, z2): Takes two COMPLEX structures and a return a new com-
plex structure that holds the sum of the given complex numbers. Thus z3 = z1 + z2.

3. z3 ← complex sub(z1, z2): Takes two COMPLEX structures and a return a new com-
plex structure that holds the subtraction of z2 from z1. Thus z3 = z1 − z2.

4. z3 ← complex mult(z1, z2): Takes two COMPLEX structures and a return a new
complex structure that holds the multiplication of the given complex numbers. Thus
z3 = z1 ∗ z2.

5. z3 ← complex div(z1, z2): Takes two COMPLEX structures and a return a new com-
plex structure that holds the division z3 = z1/z2. Thus z3 = z1/z2.

6. b ← complex print(z): Takes a COMPLEX structure prints the element in the form
“x + i y”. Return a success bit b in the end of successful printing.

7. Write your own main function to tests the above functions.

• For inputs and outputs, follow #AP0303

[20]

1

Assignment problem # AP0602

Lists: Create a linked list of complex numbers. Each node is structure as
typedef struct complex node { COMPLEX z; struct complex node * next; }COMPLEX NODE;.
Now, do the followings.

1. N ← Create Complex Node(): That creates a node and returns the address of the
node.

2. b ← List Add(L, z): Take the address of a list L and add an element z in the end of
the list L. It returns a bit that indicates success/failure. (L can be considered as head
of the list)

3. b← List Push(L, z): Take the address of a list L and add an element z in front of the
list L. It returns a bit that indicates success/failure.

4. b← List Delete(L, z): Take the address of a list L and delete the element z if exists.
It returns a bit that indicates success/failure.

5. b ← Show Complex List(L): Take the address of a list L and prints the elements
present in the list. It returns a bit b that indicates success/failure.

6. b ← List Search(L, z): Take the address of a list L and search the element z. It
returns b = 1 if exists, b = 0 if does not exist and b = −1 if fails to search.

7. b← List Sort(L): Take the address of a list L and sort the elements according to the
distances from origin.

8. b ← List Insert(L, z, pos n): Insert an complex number z in the pos nth position in
the list. It returns a bit that indicates success/failure.

9. x← List Pop(L): Take the address of a list L and delete the element z from the front
of the linked list. It returns a bit that indicates success/failure.

10. b ← List Reverse(L): Take the address of a list L, rearrange the values in reverse
order. It returns a bit b that indicates success/failure.

11. L3 ← List Concatenate(L1, L2): Takes two lists L1 and L2, create a new empty list
L3. Rearrange the lists so that L3 contains the complex numbers from L1 and L2.

12. l← List Length(L): Returns the length of the linked list L.

13. z ← List Max(L): Returns the complex number z having maximum distance from
the origin.

14. z ← List Min(L): Returns the complex number z having minimum distance from the
origin.

2

15. L3 ← List union(L1, L2): It takes two linked lists S1 and S2 and returns a new list
S3 that contains all elements from L1 and L2 without repeat. Note that concatenate
may return a list having nodes with same complex numbers. Even any list can have
repeated complex number. Thus L3 ← L1 ∪ L2

16. L3 ← List intersection(L1, L2): It takes two linked lists L1 and L2 and returns a new
list L3 which contains those complex numbers which are contained in both given lists.
Thus, L3 ← L1 ∩ L2

17. L3 ← List difference(L1, L2): It takes two linked lists L1 and L2 and returns a new
list L3 which contains those complex numbers which are contained in L1 but not in
L2. L3 ← L1 \ L2

• Write your own main function having a meaningful menu to test the above operations.

[200]

3

