tcg crest |Institute for Advancing Intelligence, TCG CREST

(TCG Centres for Research and Education in Science and Technology)

Inventing Harmonious Future

Introduction to Computer Programming and Data Structures
Assignment 04

Maximum Marks: 100 Submission Deadline: 2022-Sep-09
Bonus: 20 — for well indentation, variable name, programming style and following the check-
points

Topic: Multi-dimensional arrays, matrix operations and command line arguments.

Assignment problem # AP0401

e Matrix Library: Consider you are building a library for matrix operations. Let the file
be “myMatrix.c”. The file should have the following functions.

1. void ** my malloc 2D(int n, int m, int unit_size): It takes dimension
of any 2D matrices A, ,, and allocates memory for that matrix and returns the
pointer to the allocated memory as void **. It returns NULL in case of failure.

Here, unit_size is the no of bytes in each memory. E.g., for int, unit_size
= 4 and for char , unit_size = 1. Hint: after a matrix is allocated, it can be
typecast as A= (int **)my malloc_2D(n,m, sizeof(int)). Note that this 2D
Memory allocation can be applied to any structure too.

2. void *** my malloc_3D(int m, int n, int p, int unit_size): It takes di-
mension of any 3D matrices A,,x,x, and allocates memory for that matrix and
returns the pointer to the allocated memory as void ***. It returns NULL in case
of failure.

3. void show_2D matrix(void **A, int n, int m, char type): It takes a 2D
array pointer and its dimension and type of variable indicator type. It prints the
elements of the matrix A, xm.

Here, consider the following types.
a— char, b — int, ¢ — unsigned int, d — long, e — unsigned long, f — float, g
— double, h — long double.

4. void show_3Dmatrix(void ***A, int m, int n, int p, char type): It takes
a 3D array pointer and its dimension and type of variable indicator type. It prints
the elements of the matrix A, xpnxp-

10.

scan 2D matrix from opened file(void **A, int n, int m, char type, FILE
* inp file ptr): It takes a 2D array pointer, its dimension and type of variable
indicator type. It scans the elements of the matrix A, ,, from the file opened
already in inp_file_ptr. It returns 0 in case of failure.

scan_3D_matrix _from opened file(void **A, int m, int n, int p, char type,
FILE * inp_file ptr): It takes a 3D array pointer, its dimension and type of
variable indicator type. It scans the elements of the matrix A, xnx, from the file
opened already in inp_file_ptr. It returns 0 in case of failure.

scan 2D matrix from unopened file(void **A, char type, char inp file namel[]
): It takes a 2D array pointer and type of variable indicator type. First, it scans

the dimensions m, n of the matrix, then it scans the elements of the matrix A,,xn,

from the file inp_file_name. It returns 0 in case of failure.

scan_3D_matrix_from unopened file(void **A, char type, char inp file namel[]
): It takes a 3D array pointer, and type of variable indicator type. First, it scans

the dimensions m, n,p of the matrix, then it scans the elements of the matrix
Apxnxp from the file inp_file name. It returns 0 in case of failure.

void ** matrix mult(A, B, m, n ,p, type): This takes 2 matrices and out-
puts its products in a new matrix. Note that typecasting is mandatory after
receiving the result.

Write your own main function that tests matrix multiplication. This can be done
as follows.

(a) Suppose each input matrix is kept in a separate file. For example, let “in-
put_matrix_a.txt” and “input_matrix_b.txt” be two files, each of which is kept
a 2D matrix.

(b) Suppose the program file myMatrix.c is compiled. Then run as
./a.out input matrix_a.txt input_matrix b.txt b.
The program should output the product of the two matrices kept in “in-
put_matrix_a.txt” and “input_matrix_b.txt”. Thus, for multiplication, pass
the name of the matrix files from the command line. The third argument
indicates the type of variables of the matrix entries.

(¢) The main function first reads the first file, scans dimensions of the matrix,
allocates memory for that matrix, scan the matrix entries say in A. Then it
does the same for the next file, say in B.

(d) Then it calls void ** matrix mult(A, B, m, n ,p, type) to multiply the
matrices and prints the result matrix in the terminal.

(e) Try to return an error message in case of any failure.

[100]

Submission checkpoints

1.
2.

10.

All functions must be declared before defining any.

Any repeating work must be done in a function. Main function is only for testing the
other defined functions.

Check indentation
Throw error and exit if any of scanf or fscanf is failed.
Take inputs from files only

submit your input_file along with each problem. If AP0104 is the problem ID, then the
input file must be “input_AP0104_stName”. stName indicates student name as usual.

make free all dynamically allocated memories.

. Any 2D input matrix should be kept in file as follows

nm

a1 12 ... A1y,
a921 A22 ... A1m
Ap1 Ap2 ..., Apm

Any 3D input matrix should be kept in file as following

nmp

@111 A121 - - - Q1ml
211 A221 .. A1ml
Ap11 Ap21 - - -y Anml
112 A122 - .. G1m2
A212 A222 ... G1m2
Ap12 Ap22 - - -y Anm2
Q11p A12p - - - A1mp
G21p A22p - - - A1mp
Qplp An2p -+ -y Anmp

A single input file may contain multiple matrices. However, the dimensions must be
kept before matrix entries.

[40]

