
Institute for Advancing Intelligence, TCG CREST
(TCG Centres for Research and Education in Science and Technology)

info.iai@tcgcrest.org
ADMIT CARD FOR PH.D. ENTRANCE EXAMINATION 2022

Candidate’s Name: ANJALI

Candidate’s Address:
c/o Santram Dewangan pragati
vihar colony santoshi nagar
raipur
raipur
PIN: 492001
India

Registration Number: IAIKOL22-612

Date of Birth: 1995-12-06
Photo Id Card Type: Aadhaar/ Voter ID/ Passport/ PAN

Photo Id Card No.:
Email Id: anjali.dewangan1@gmail.com

Test Date: May 28, 2022 (14:00 – 17:30 IST) Test Venue:

Signature of the
Candidate: ONLINE

READ ALL THE INSTRUCTIONS CAREFULLY

 1. This Admit Card is not transferable.

 2. In case of any discrepancy in the scanned photo/signature, the candidate should immediately
 inform the Admission committee by sending an email to info.iai@tcgcrest.org.

 3. For all the answers, please use pen with black/blue ink; for diagrams and rough works,
 you can use lead pencils.

 4. Candidates have to send a scanned copy of the signed admit card along with their scanned
copy of answer scripts..

Introduction to Computer Programming and Data Structures

Assignment 04

Maximum Marks: 100 Submission Deadline: 2022-Sep-09
Bonus: 20 – for well indentation, variable name, programming style and following the check-
points

Topic: Multi-dimensional arrays, matrix operations and command line arguments.

Assignment problem # AP0401

• Matrix Library: Consider you are building a library for matrix operations. Let the file
be “myMatrix.c”. The file should have the following functions.

1. void ** my malloc 2D(int n, int m, int unit size): It takes dimension
of any 2D matrices An×m and allocates memory for that matrix and returns the
pointer to the allocated memory as void **. It returns NULL in case of failure.

Here, unit size is the no of bytes in each memory. E.g., for int, unit size

= 4 and for char , unit size = 1. Hint: after a matrix is allocated, it can be
typecast as A= (int **)my malloc 2D(n,m, sizeof(int)). Note that this 2D
Memory allocation can be applied to any structure too.

2. void *** my malloc 3D(int m, int n, int p, int unit size): It takes di-
mension of any 3D matrices Am×n×p and allocates memory for that matrix and
returns the pointer to the allocated memory as void ***. It returns NULL in case
of failure.

3. void show 2D matrix(void **A, int n, int m, char type): It takes a 2D
array pointer and its dimension and type of variable indicator type. It prints the
elements of the matrix An×m.

Here, consider the following types.

a→ char, b → int, c → unsigned int, d → long, e → unsigned long, f → float, g
→ double, h → long double.

4. void show 3D matrix(void ***A, int m, int n, int p, char type): It takes
a 3D array pointer and its dimension and type of variable indicator type. It prints
the elements of the matrix Am×n×p.

1

5. scan 2D matrix from opened file(void **A, int n, int m, char type, FILE

* inp file ptr): It takes a 2D array pointer, its dimension and type of variable
indicator type. It scans the elements of the matrix An×m from the file opened
already in inp file ptr. It returns 0 in case of failure.

6. scan 3D matrix from opened file(void **A, int m, int n, int p, char type,

FILE * inp file ptr): It takes a 3D array pointer, its dimension and type of
variable indicator type. It scans the elements of the matrix Am×n×p from the file
opened already in inp file ptr. It returns 0 in case of failure.

7. scan 2D matrix from unopened file(void **A, char type, char inp file name[]

): It takes a 2D array pointer and type of variable indicator type. First, it scans
the dimensions m,n of the matrix, then it scans the elements of the matrix An×m

from the file inp file name. It returns 0 in case of failure.

8. scan 3D matrix from unopened file(void **A, char type, char inp file name[]

): It takes a 3D array pointer, and type of variable indicator type. First, it scans
the dimensions m,n, p of the matrix, then it scans the elements of the matrix
Am×n×p from the file inp file name. It returns 0 in case of failure.

9. void ** matrix mult(A, B, m, n ,p, type): This takes 2 matrices and out-
puts its products in a new matrix. Note that typecasting is mandatory after
receiving the result.

10. Write your own main function that tests matrix multiplication. This can be done
as follows.

(a) Suppose each input matrix is kept in a separate file. For example, let “in-
put matrix a.txt” and “input matrix b.txt” be two files, each of which is kept
a 2D matrix.

(b) Suppose the program file myMatrix.c is compiled. Then run as
./a.out input matrix a.txt input matrix b.txt b.
The program should output the product of the two matrices kept in “in-
put matrix a.txt” and “input matrix b.txt”. Thus, for multiplication, pass
the name of the matrix files from the command line. The third argument
indicates the type of variables of the matrix entries.

(c) The main function first reads the first file, scans dimensions of the matrix,
allocates memory for that matrix, scan the matrix entries say in A. Then it
does the same for the next file, say in B.

(d) Then it calls void ** matrix mult(A, B, m, n ,p, type) to multiply the
matrices and prints the result matrix in the terminal.

(e) Try to return an error message in case of any failure.

[100]

2

Submission checkpoints

1. All functions must be declared before defining any.

2. Any repeating work must be done in a function. Main function is only for testing the
other defined functions.

3. Check indentation

4. Throw error and exit if any of scanf or fscanf is failed.

5. Take inputs from files only

6. submit your input file along with each problem. If AP0104 is the problem ID, then the
input file must be “input AP0104 stName”. stName indicates student name as usual.

7. make free all dynamically allocated memories.

8. Any 2D input matrix should be kept in file as follows
n m
a11 a12 . . . a1m
a21 a22 . . . a1m
...
an1 an2 . . ., anm

9. Any 3D input matrix should be kept in file as following
n m p
a111 a121 . . . a1m1

a211 a221 . . . a1m1
...
an11 an21 . . ., anm1

a112 a122 . . . a1m2

a212 a222 . . . a1m2
...
an12 an22 . . ., anm2

a11p a12p . . . a1mp

a21p a22p . . . a1mp
...
an1p an2p . . ., anmp

10. A single input file may contain multiple matrices. However, the dimensions must be
kept before matrix entries.

[40]

3

