Introduction to Computer Programming and Data Structures Assignment 03

Maximum Marks: 150
Submission Deadline: 2022-Sep-01
Bonus: 20 -for well indentation, variable name and programming style

Assignment problem \# AP0301

- Problem: Find the GCD of two integers using the Euclidean algorithm. Write two functions GCD_R and GCD_I with recursion and iteration, respectively. Compute the respective execution time $\operatorname{Time}_{R}(a, b)$ and $\operatorname{Time}_{I}(a, b)$ for input a and b.
- Input: n followed by N space separated a, b
n
$a_{1} b_{1}$
$a_{2} b_{2}$
\vdots
a_{n}, b_{n}
Where, $\left(a_{i}, b_{i} \in \mathbb{Z}\right.$ and $\left.0<N \leq 10000\right)$. The name of the input file must be input_AP0301.txt
- Output: $a_{i} b_{i} \operatorname{gcd}\left(a_{i}, b_{i}\right)$ separated by space
$a_{1} b_{1} G C D _R\left(a_{1}, b_{1}\right) G C D_{-} I\left(a_{1}, b_{1}\right) \operatorname{Time}_{R}\left(a_{1}, b_{1}\right) \operatorname{Time}_{I}\left(a_{1}, b_{1}\right)$
$a_{2} b_{2} G C D _R\left(a_{2}, b_{2}\right) G C D _I\left(a_{2}, b_{2}\right) \operatorname{Time}_{R}\left(a_{2}, b_{2}\right) \operatorname{Time}_{I}\left(a_{2}, b_{2}\right)$
\vdots
$a_{n} b_{n} G C D_{-} R\left(a_{n}, b_{n}\right) G C D_{-} I\left(a_{n}, b_{n}\right) \operatorname{Time}_{R}\left(a_{n}, b_{n}\right) \operatorname{Time}_{I}\left(a_{n}, b_{n}\right)$
Time can be in second.

Assignment problem \# AP0302

- Problem: In mathematical terms, the sequence F_{n} of Fibonacci numbers is defined by the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$ with seeded value $F_{0}=0$ and $F_{1}=1$. The series can be given as $0,1,1,2,3,5,8,13,21,34,55,89,144, \cdots$

Write two functions Fibonacci_R and Fibonacci_I with recursion and iteration, respectively. Compute the respective execution time $\operatorname{Time}_{R}(n)$ and $\operatorname{Time}_{I}(n)$ for input n.

- Input: N followed by N space separated $n_{i} \mathrm{~S}$

N
$n_{1} n_{2} \cdots n_{N}$
Where, $\left(n_{i} \in \mathbb{Z}\right.$ and $\left.0<n_{i} \leq 100000\right)$. The name of the input file must be input_AP0302.txt

- Output:
n_{1} Fibonacci_R $\left(n_{1}\right)$ Fibonacci_I $\left(n_{1}\right)$ Time $_{R}\left(n_{1}\right)$ Time $_{I}\left(n_{1}\right)$
n_{2} Fibonacci_R $\left(n_{2}\right)$ Fibonacci_I $\left(n_{2}\right) \operatorname{Time}_{R}\left(n_{2}\right) \operatorname{Time}_{I}\left(n_{2}\right)$
\vdots
n_{N} Fibonacci_R(n_{N}) Fibonacci_I $\left(n_{N}\right) \operatorname{Time}_{R}\left(n_{N}\right) \operatorname{Time}_{I}\left(n_{N}\right)$
Time can be in second.

Assignment problem \# AP0303

- Building Rational number library. A rational number is a type of real number, which is in the form of p / q where $p, q \in \mathbb{Z}$ and $q \neq 0$. A rational number can be represented as a structure of two integers- numerator and denominator.
struct rational \{
int num;
int den; \};
Build your rational number library with the following operations.

1. $0 / 1 \leftarrow$ rational_init $(\& r, x, y)$, given an address of a rational numbers structure r and two values x, y, it outputs the numerator and denominator with x and y respectively. Finally returns 0 on failure and 1 on success.
2. $r_{3} \leftarrow$ rational_add $\left(r_{1}, r_{2}\right)$, given two rational numbers r_{1} and r_{2}, it outputs another rational number r_{3} such that $r_{3}=r_{1}+r_{2}$.
3. $r_{3} \leftarrow$ rational_sub $\left(r_{1}, r_{2}\right)$, given two rational numbers r_{1} and r_{2}, it outputs another rational number r_{3} such that $r_{3}=r_{1}-r_{2}$.
4. $r_{3} \leftarrow$ rational_mul $\left(r_{1}, r_{2}\right)$, given two rational numbers r_{1} and r_{2}, it outputs another rational number r_{3} such that $r_{3}=r_{1} * r_{2}$.
5. $r_{3} \leftarrow$ rational_div $\left(r_{1}, r_{2}\right)$, given two rational numbers r_{1} and r_{2}, it outputs another rational number r_{3} such that $r_{3}=r_{1} / r_{2}$.

- Input: n followed by N space separated $x_{i}, y_{i}, o p_{i}, x_{i}^{\prime}, y_{i}^{\prime}$
n
$x_{1} y_{1} o p_{1} x_{1}^{\prime} y_{1}^{\prime}$
$x_{2} y_{2} o p_{2} x_{2}^{\prime} y_{2}^{\prime}$
引
$x_{n} y_{n} o p_{n} x_{n}^{\prime} y_{n}^{\prime}$
Here $o p_{i}$ is one of $\left\{+,-,^{*}, /\right\}, r_{i}=x_{i} / y_{i}, r_{i}^{\prime}=x_{i}^{\prime} / y_{i}^{\prime} \in \mathbb{Q}$. Input file input_AP0303.txt
- Output: If $r_{i}^{\prime \prime}=x_{i}^{\prime \prime} / y_{i}^{\prime \prime}$ is the output of i th input then
$x_{1}^{\prime \prime} y_{1}^{\prime \prime}$
$x_{2}^{\prime \prime} y_{2}^{\prime \prime}$
\vdots
$x_{n}^{\prime \prime} y_{n}^{\prime \prime}$
- A rational number p / q is said to be in canonical form if p and q are co-prime, and $q>$ 0 . Output the results of the above four operations in canonical form. Hint: use GCD..

Assignment problem \# AP0304

- Problem: Suppose, a freshly graduated student, Chatur gets a job offer from a reputed company with an initial salary Rs. s /month when his/her age is a. Chatur wants to deposit 10% of his salary in an Employees' Provident Fund (EPF) and 10% in an Equity Linked Savings Schemes (ELSS). Suppose, EPF and ELSS give 1\% and 0.65\% monthly interests respectively.

1. If annual growth of the salary is 8%, what will be the expected values in EPF (saving $_{\text {epf }}$) and ELSS (savings $s_{\text {elss }}$) funds after n years.
2. If 10% of the ELSS fund is withdrawn for vacation every year, what will be the expected value (savings welss) in ELSS fund after n years.
3. One year later, a colleague advised Chatur to invest in a small cap Small cap index fund SCF that can monthly return 1.5%. If savings $s_{s c f}$ is the expected value in that fund after n years, then compute savings scf.
4. Let, monthly inflation in India be at 7.5%, some Govt. agency wants to give monthly interest on savings just enough to keep the savings invariant with inflation. So, it gives a monthly interest of 0.61%. If savingsinf be the value of that fund after n years, find savings inf .
5. However, Chatur is new and afraid of market volatility. He wants a peaceful life. So, he decides to keep 10% of his salary in a Recurring Deposit (RD) that gives monthly returns of 0.41%. However, from the 5th year onward, he has to give 20% of its interest yearly as tax to the government. If savings $s_{F D}$ be the value of that fund after n years, find savings ${ }_{F D}$.

- Input: The number of input followed by N inputs s a n each in a new line. Input file input_AP0304.txt as usual.
- Output: For each input line, print in terminal followings, separated by tab in new line.
- savings epf savings elss savings $w_{w e l s s}$ savings $_{\text {scf }}$ savings $_{i n f} \operatorname{savings}_{F D}$

