

Institute for Advancing Intelligence, TCG CREST (TCG Centres for Research and Education in Science and Technology)

Introduction to Computer Programming and Data Structures Assignment 03

Maximum Marks: 150 Submission Deadline: **2022-Sep-01** Bonus: 20 –for well indentation, variable name and programming style

Assignment problem # AP0301

- Problem: Find the GCD of two integers using the Euclidean algorithm. Write two functions GCD_R and GCD_I with recursion and iteration, respectively. Compute the respective execution time $Time_R(a, b)$ and $Time_I(a, b)$ for input a and b.
- Input: n followed by N space separated a, b n $a_1 b_1$ $a_2 b_2$: a_n, b_n Where, $(a_i, b_i \in \mathbb{Z} \text{ and } 0 < N \leq 10000)$. The name of the input file must be input_AP0301.txt
- Output: a_i b_i gcd(a_i, b_i) separated by space
 a₁ b₁ GCD_R(a₁, b₁) GCD_I(a₁, b₁) Time_R(a₁, b₁) Time_I(a₁, b₁)
 a₂ b₂ GCD_R(a₂, b₂) GCD_I(a₂, b₂) Time_R(a₂, b₂) Time_I(a₂, b₂)
 :
 a_n b_n GCD_R(a_n, b_n) GCD_I(a_n, b_n) Time_R(a_n, b_n) Time_I(a_n, b_n)
 Time can be in second.

[30]

Assignment problem # AP0302

• Problem: In mathematical terms, the sequence F_n of Fibonacci numbers is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ with seeded value $F_0 = 0$ and $F_1 = 1$. The series can be given as 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Write two functions Fibonacci_R and Fibonacci_I with recursion and iteration, respectively. Compute the respective execution time $Time_R(n)$ and $Time_I(n)$ for input n.

• Input: N followed by N space separated n_i s N

 $n_1 n_2 \cdots n_N$ Where, ($n_i \in \mathbb{Z}$ and $0 < n_i \leq 100000$). The name of the input file must be input_AP0302.txt

• Output:

 n_1 Fibonacci_R(n_1) Fibonacci_I(n_1) Time_R(n_1) Time_I(n_1) n_2 Fibonacci_R(n_2) Fibonacci_I(n_2) Time_R(n_2) Time_I(n_2) : n_N Fibonacci_R(n_N) Fibonacci_I(n_N) Time_R(n_N) Time_I(n_N) Time can be in second.

[30]

Assignment problem # AP0303

• Building Rational number library. A rational number is a type of real number, which is in the form of p/q where $p, q \in \mathbb{Z}$ and $q \neq 0$. A rational number can be represented as a structure of two integers- numerator and denominator. struct rational {

```
int num;
```

int den; };

Build your rational number library with the following operations.

- 1. $0/1 \leftarrow rational_init (\&r, x, y)$, given an address of a rational numbers structure r and two values x, y, it outputs the numerator and denominator with x and y respectively. Finally returns 0 on failure and 1 on success.
- 2. $r_3 \leftarrow rational_add (r_1, r_2)$, given two rational numbers r_1 and r_2 , it outputs another rational number r_3 such that $r_3 = r_1 + r_2$.
- 3. $r_3 \leftarrow rational_sub (r_1, r_2)$, given two rational numbers r_1 and r_2 , it outputs another rational number r_3 such that $r_3 = r_1 r_2$.
- 4. $r_3 \leftarrow rational_mul (r_1, r_2)$, given two rational numbers r_1 and r_2 , it outputs another rational number r_3 such that $r_3 = r_1 * r_2$.
- 5. $r_3 \leftarrow rational_div (r_1, r_2)$, given two rational numbers r_1 and r_2 , it outputs another rational number r_3 such that $r_3 = r_1/r_2$.
- Input: n followed by N space separated $x_i, y_i, op_i, x'_i, y'_i$

```
n

x_1 y_1 op_1 x'_1 y'_1

x_2 y_2 op_2 x'_2 y'_2

:

x_n y_n op_n x'_n y'_n

Here op_i is one of \{+, -, *, /\}, r_i = x_i/y_i, r'_i = x'_i/y'_i \in \mathbb{Q}. Input file input_AP0303.txt

• Output: If r''_i = x''_i/y''_i is the output of ith input then
```

• A rational number p/q is said to be in canonical form if p and q are co-prime, and q > 0. Output the results of the above four operations in canonical form. Hint: use GCD...

[10]

Assignment problem # AP0304

- Problem: Suppose, a freshly graduated student, Chatur gets a job offer from a reputed company with an initial salary Rs. s /month when his/her age is a. Chatur wants to deposit 10% of his salary in an Employees' Provident Fund (EPF) and 10% in an Equity Linked Savings Schemes (ELSS). Suppose, EPF and ELSS give 1% and 0.65% monthly interests respectively.
 - 1. If annual growth of the salary is 8%, what will be the expected values in EPF $(savings_{epf})$ and ELSS $(savings_{elss})$ funds after n years.
 - 2. If 10% of the ELSS fund is withdrawn for vacation every year, what will be the expected value $(savings_{welss})$ in ELSS fund after *n* years.
 - 3. One year later, a colleague advised Chatur to invest in a small cap Small cap index fund SCF that can monthly return 1.5%. If $savings_{scf}$ is the expected value in that fund after n years, then compute $savings_{scf}$.
 - 4. Let, monthly inflation in India be at 7.5%, some Govt. agency wants to give monthly interest on savings just enough to keep the savings invariant with inflation. So, it gives a monthly interest of 0.61%. If $savings_{inf}$ be the value of that fund after n years, find $savings_{inf}$.
 - 5. However, Chatur is new and afraid of market volatility. He wants a peaceful life. So, he decides to keep 10% of his salary in a Recurring Deposit (RD) that gives monthly returns of 0.41%. However, from the 5th year onward, he has to give 20% of its interest yearly as tax to the government. If $savings_{FD}$ be the value of that fund after n years, find $savings_{FD}$.
- Input: The number of input followed by N inputs s a n each in a new line. Input file input_AP0304.txt as usual.
- Output: For each input line, print in terminal followings, separated by tab in new line.

 $- savings_{epf} savings_{elss} savings_{welss} savings_{scf} savings_{inf} savings_{FD}$

[40]