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Introduction to Trees

Binary Search Trees
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Introduction to Trees

What is a Tree?

m A Tree is a data structure consisting of nodes.

m Each node contains a value or data, and links to child nodes.
m The topmost node is called the root.

m A node without children is called a leaf.
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Introduction to Trees

Tree Terminology

Root: The topmost node in the tree.

Leaf: A node with no children.

Parent: A node that has children.

Subtree: A tree consisting of a node and its descendants.

Binary Tree: A tree where each node has at most two children.
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Introduction to Trees  Types of Trees

Types of Trees

Binary Tree: Each node has at most two children.
Binary Search Tree (BST): A binary tree with ordered nodes.
AVL Tree: A self-balancing binary search tree.

m-ary Tree: Each node has at most m children.

Heap: A tree where the parent node is greater (or smaller) than
its children.

Binary Search Tree
m left subtree contains lesser values, by convention

m right subtree contains higher values, by convention
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Introduction to Trees  Types of Trees

Binary Search Tree (BST) Example

Root

Leaf Leaf Leaf Leaf

m Root: The topmost node (15).

m Leaf: Nodes without children (7, 12, 17, 25).

m Parent and Child: Relationships between nodes (e.g., 10 is
parent, 7 and 12 are children).

m Subtree: A smaller part of the tree, e.g., (10, 7, 12).
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Introduction to Trees  Types of Trees

Binary Search Tree (BST) Implementation in C

Node structure

struct Node {
int data;
struct Nodex left;
struct Nodex right;

// Function to create a new node

1
2

3

4

5 };
6

7

g struct Nodex createNode(int value) {
9

struct Nodex newNode = (struct Nodex)malloc(sizeof(struct Node
));
10 newNode—>data = value;
11 newNode—>left = NULL;
12 newNode—>right = NULL;
13 return newNode;
14}
15
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Introduction to Trees Insert in a BST

Insert Function in C

1 struct Nodex insert(struct Nodex node, int data) {
2 if (node = NULL) {

3 struct Nodex temp = createNode(data);

4 return temp;

5

6 if (data < node—>data)

7 node—>left = insert(node—>left , data);

8 else if (data > node—>data)

9 node—>right = insert(node—>right , data);
10 return node;

11}

12
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Introduction to Trees  Search in a BST

Searching in a BST

0

truct

Nodex search(struct Nodex root, int key)

Base Cases: root is null or key is present at root
(root = NULL || root—>key = key)
return root;

Key is greater than root's key
(root—>key < key)
return search(root—>right , key);

// Key is smaller than root’'s key
return search(root—>left , key);
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Introduction to Trees  Traversal Algorithms

Tree Traversal Algorithms in C

m Inorder Traversal (Left, Root, Right):

m Traverse the left subtree.
m Visit the root.
m Traverse the right subtree.

m Preorder Traversal (Root, Left, Right):

m Visit the root.
m Traverse the left subtree.
m Traverse the right subtree.

m Postorder Traversal (Left, Right, Root):

m Traverse the left subtree.
m Traverse the right subtree.
m Visit the root. tegcrest
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Introduction to Trees  Traversal Algorithms

Tree Traversal Examples

Sample Tree:
1

/\
2 3

/ o\
4 5
m Inorder Traversal: 4, 2,5, 1, 3
m Preorder Traversal: 1,2, 4,5, 3
m Postorder Traversal: 4, 5,2, 3,1
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Introduction to Trees Inorder Traversal in C

Inorder Traversal in C

1 void inorder(struct Nodex root) {
2 if (root != NULL) {

3 inorder (root—>left);

4 printf("%d —>", root—>data);
5 inorder (root—>right);
6
7
8

}
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Introduction to Trees Preorder Traversal in C

Preorder Traversal in C

1 void preorder(struct Nodex root) {
2 if (root != NULL) {

3 printf("%d —>", root—>data);
4 preorder (root—>left);

5 preorder (root—>right);
6
7
8

}
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Introduction to Trees Postorder Traversal in C

Postorder Traversal in C

1 void postorder(struct Nodex root) {
2 if (root != NULL) {

3 postorder (root—>left);

4 postorder (root—>right);

5 printf("%d —>", root—>data);
6
7
8

}
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Introduction to Trees Postorder Traversal in C

Deletion in a Binary Search Tree

m Case 1: Deleting a leaf node (no children).
m Case 2: Deleting a node with one child.

m Case 3: Deleting a node with two children (find in-order
successor or predecessor).
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Introduction to Trees Postorder Traversal in C

Example: Deletion in a BST

ORRORNGEE™

m Case 1: Deleting a Leaf Node, Delete 20
m Case 2: Deleting a Node with One Child, Delete 70
m Case 3: Deleting a Node with Two Children, Delete 50
tegcrest
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Introduction to Trees Postorder Traversal in C

Detailed Explanation of Deletion Cases

m Case 1: Deleting a Leaf Node
Example: Delete node 20. Since it has no children, simply
remove the node.

m Case 2: Deleting a Node with One Child
Example: Delete node 70. Replace the node with its only child
(80).

m Case 3: Deleting a Node with Two Children
Example: Delete node 50. Replace the node with its in-order
successor (60), and adjust the tree.
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Introduction to Trees Deletion in Binary Search Tree

Deletion in Binary Search Tree

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22}

struct Nodex deleteNode(struct Nodex root, int key) {

if (root = NULL) return root;

if (key < root—>data)

root—>left = deleteNode(root—>left , key);
else if (key > root—>data)

root—>right = deleteNode(root—>right , key):

else {

if (root—>left == NULL) {
struct Nodex temp = root—>right;
free(root);
return temp;

} else if (root—>right — NULL) {
struct Nodex temp = root—>left;
free(root); return temp;

struct Nodex temp = minValueNode(root—>right);
root—>data = temp—>data;
root—>right = deleteNode(root—>right , temp—>data);

}

return root; ast
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Introduction to Trees Deletion in Binary Search Tree

minValueNode() Function in C

struct Nodex minValueNode(struct Nodex node) {
struct Nodex current = node;

1
2
3
4 // Find the leftmost leaf

5 while (current && current—>left != NULL)
6 current = current—>left;

7

8

9

return current;

}

10
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Iterative Algorithms in a BST

lterative Algorithms

Binary Search Trees
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Iterative Algorithms in a BST

lterative Inorder Traversal

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

m Inorder Traversal: Left subtree, Root, Right subtree.

m Use an explicit stack to simulate the recursive behavior.

void iterativelnorder(struct Nodex root) {
struct Nodex current = root;
struct Stack* stack = createStack (MAX HEIGHT) ;
while (!isEmpty(stack) || current != NULL) {
if (current != NULL) {
push(stack , current);
current = current—>left;
} else {
current = pop(stack);
printf("%d —>", current—>data);
current = current—>right;
3
}
¥
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Iterative Algorithms in a BST

lterative Preorder Traversal

m Preorder Traversal: Root, Left subtree, Right subtree.

m Use an explicit stack to simulate recursive preorder traversal.

1 void iterativePreorder(struct Nodex root) {
2 if (root = NULL) return;
3 struct Stackx stack = createStack (MAX_ HEIGHT) ;
4 push(stack, root);
5
6 while (!isEmpty(stack)) {
7 struct Nodex current = pop(stack);
8 printf("%d —>", current—>data);
9
10 if (current—>right != NULL) push(stack, current—>right);
11 if (current—>left != NULL) push(stack, current—>left);
12 }
13 }
14
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Iterative Algorithms in a BST

lterative Postorder Traversal

m Postorder Traversal: Left subtree, Right subtree, Root.
m Use two stacks to simulate the recursive behavior.

1 void iterativePostorder(struct Nodex root) {

2 if (root = NULL) return;

3 struct Stackx sl = createStack (MAX HEIGHT) ;

4 struct Stack* s2 = createStack (MAX HEIGHT) ;

5

6 push(sl, root);

7 while (lisEmpty(sl)) {

8 struct Nodex current = pop(sl);

9 push(s2, current);

10

11 if (current—>left != NULL) push(sl, current—>left);

12 if (current—>right != NULL) push(sl, current—>right);

13 }

14

15 while (lisEmpty(s2)) {

16 struct Nodex node = pop(s2);

17 printf("%d —>", node—>data);

18 } ast
19 }
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Iterative Algorithms in a BST  Iterative Search in BST

lterative Search in BST

m Search for a key in the Binary Search Tree using a loop.
m Traverse left if the key is smaller than the current node.
m Traverse right if the key is larger.

1 struct Nodex iterativeSearch(struct Nodex root, int key) {
2 while (root != NULL) {

3 if (root—>data == key)

4 return root;

5 else if (key < root—>data)
6 root = root—>left;

7 else

8 root = root—>right;

9 }

10 return NULL;

11}

12
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Iterative Algorithms in a BST  Iterative Deletion in BST

lterative Deletion in BST

m Delete a node in a Binary Search Tree iteratively.

m Handle three cases: node to be deleted has no child, one child,
or two children.
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Iterative Algorithms in a BST  Iterative Deletion in BST

lterative Deletion Algorithm in BST |

struct Nodex deleteNodelterative(struct Nodex root, int key) {
struct Nodex parent = NULL;

struct Nodex x current = root;
while (current != NULL && current—>data != key) {
parent = current;
if (key < current—>data)
current = current—>left ;
else
current = current—>right;
if (current == NULL) return root; // Node not found
if (current—>left == NULL || current—>right = NULL) {
struct Nodex newCurr = (current—>left) ? current—>left

current—>right;

if (parent — NULL)

return newCurr;
if (current = parent—>left)
parent—>left = newCurr;

else

Laltu Sardar (lIAl, TCG Crest)

Intro to Programming & Data Structures

o st

28 /37



Iterative Algorithms in a BST  Iterative Deletion in BST

lterative Deletion Algorithm in BST Il

20 parent—>right = newCurr;

21 free(current);

22 } else {

23 struct Nodex successor = minValueNode(current—>right);
24 int successorData = successor—>data;

25 deleteNodelterative (root, successorData);
26 current—>data = successorData;

27 }

28 return root;

20 }

30
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Iterative Algorithms in a BST  Iterative Deletion in BST

minValueNode() Function in BST

m The ‘minValueNode()® function finds the smallest node in a
subtree.

m This is useful when deleting a node with two children.

struct Nodex minValueNode(struct Nodex node) {

1
2 struct Nodex current = node;

3 while (current && current—>left I= NULL)
4 current = current—>left ;

5 return current;

6 }

7
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Complexity Analysis

Complexity Analysis
of
of BST algorithms
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Complexity Analysis

Complexities of Inorder, Preorder, and Postorder

Traversals

m Time Complexity: O(n)
m Each node is visited once.
m Space Complexity:
m Recursive Traversal: O(h), where h is the height of the tree.
m lterative Traversal: O(h), as an explicit stack is used to
simulate recursion.
m Best Case:
m For a balanced BST, the height h is O(log n), making the space
complexity O(log n).
m Worst Case:
m In a skewed tree, the height h can be O(n), leading to O(n)
space complexity. tegcrest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 32/37



Complexity Analysis  Search Complexity

Complexity of Search in a BST

m Time Complexity:
m Best Case: O(1), when the key is found at the root.
m Average Case: O(logn), for a balanced tree.
m Worst Case: O(n), for a skewed tree.
m Space Complexity:
m Recursive Search: O(h), due to the call stack, where h is the
height of the tree.
m Iterative Search: O(1), no extra space is required aside from
the traversal.
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Complexity Analysis Deletion Complexity

Complexity of Deletion in a BST

m Time Complexity:
m Best Case: O(1), when deleting a node with no children.
m Average Case: O(logn), for a balanced tree.
m Worst Case: O(n), for a skewed tree.

m Space Complexity:
m Recursive Deletion: O(h), due to the call stack, where h is the

height of the tree.
m Iterative Deletion: O(1), as there is no need for recursion.
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Complexity Analysis  Analysis of Recursive Approaches

Advantages of Recursive Algorithms

Advantages:
= Simplicity:
m Recursive code is more compact and easier to write for
tree-based operations.

m Natural fit for trees due to the recursive structure of trees
(hierarchical data).

m Clarity:

m Recursive code is often clearer and easier to understand,
particularly for beginners.
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Complexity Analysis  Analysis of Recursive Approaches

Drawbacks of Recursive Algorithms

Drawbacks:
m Memory Overhead:

m Each recursive call adds a new frame to the call stack. For deep
trees (e.g., skewed trees), this could lead to stack overflow.

m Performance:

m Recursion may add some overhead due to function calls, and
managing the call stack.

m Stack Limitations:

m Recursive solutions can fail for very deep trees if the depth
exceeds the stack size, leading to stack overflow errors.
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