Search Trees in C

Course: Introduction to Programming and Data Structures

Dr. Laltu Sardar

Institute for Advancing Intelligence (IAl),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

tcg crest

Inventing Harmonious Future

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 1/37

@ Introduction to Trees

@ Types of Trees

@ Insert in a BST

@ Search in a BST
Traversal Algorithms
Inorder Traversal in C
Preorder Traversal in C
Postorder Traversal in C
Deletion in Binary Search Tree

© Iterative Algorithms in a BST
@ lterative Search in BST
@ lterative Deletion in BST
@ lterative Deletion in BST

© Complexity Analysis
@ Search Complexity
@ Deletion Complexity

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 2/37

tcg crest

@ Analysis of Recursive Approaches

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 3/37

Introduction to Trees

Binary Search Trees

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 4/37

Introduction to Trees

What is a Tree?

m A Tree is a data structure consisting of nodes.

m Each node contains a value or data, and links to child nodes.
m The topmost node is called the root.

m A node without children is called a leaf.

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 5/37

Introduction to Trees

Tree Terminology

Root: The topmost node in the tree.

Leaf: A node with no children.

Parent: A node that has children.

Subtree: A tree consisting of a node and its descendants.

Binary Tree: A tree where each node has at most two children.

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 6 /37

Introduction to Trees Types of Trees

Types of Trees

Binary Tree: Each node has at most two children.
Binary Search Tree (BST): A binary tree with ordered nodes.
AVL Tree: A self-balancing binary search tree.

m-ary Tree: Each node has at most m children.

Heap: A tree where the parent node is greater (or smaller) than
its children.

Binary Search Tree
m left subtree contains lesser values, by convention

m right subtree contains higher values, by convention

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 7/37

Introduction to Trees Types of Trees

Binary Search Tree (BST) Example

Root

Leaf Leaf Leaf Leaf

m Root: The topmost node (15).

m Leaf: Nodes without children (7, 12, 17, 25).

m Parent and Child: Relationships between nodes (e.g., 10 is
parent, 7 and 12 are children).

m Subtree: A smaller part of the tree, e.g., (10, 7, 12).

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 8/37

teg crest

Introduction to Trees Types of Trees

Binary Search Tree (BST) Implementation in C

Node structure

struct Node {
int data;
struct Nodex left;
struct Nodex right;

// Function to create a new node

1
2

3

4

5 };
6

7

g struct Nodex createNode(int value) {
9

struct Nodex newNode = (struct Nodex)malloc(sizeof(struct Node
));
10 newNode—>data = value;
11 newNode—>left = NULL;
12 newNode—>right = NULL;
13 return newNode;
14}
15
tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 9/37

Introduction to Trees Insert in a BST

Insert Function in C

1 struct Nodex insert(struct Nodex node, int data) {
2 if (node = NULL) {

3 struct Nodex temp = createNode(data);

4 return temp;

5

6 if (data < node—>data)

7 node—>left = insert(node—>left , data);

8 else if (data > node—>data)

9 node—>right = insert(node—>right , data);
10 return node;

11}

12

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 10 /37

O 0 N R WN =

11
12
13
14

Introduction to Trees Search in a BST

Searching in a BST

0

truct

Nodex search(struct Nodex root, int key)

Base Cases: root is null or key is present at root
(root = NULL || root—>key = key)
return root;

Key is greater than root's key
(root—>key < key)
return search(root—>right , key);

// Key is smaller than root’'s key
return search(root—>left , key);
Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures

11/37

Introduction to Trees Traversal Algorithms

Tree Traversal Algorithms in C

m Inorder Traversal (Left, Root, Right):

m Traverse the left subtree.
m Visit the root.
m Traverse the right subtree.

m Preorder Traversal (Root, Left, Right):

m Visit the root.
m Traverse the left subtree.
m Traverse the right subtree.

m Postorder Traversal (Left, Right, Root):

m Traverse the left subtree.
m Traverse the right subtree.
m Visit the root. tegcrest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 12 /37

Introduction to Trees Traversal Algorithms

Tree Traversal Examples

Sample Tree:
1

/\
2 3

/ o\
4 5
m Inorder Traversal: 4, 2,5, 1, 3
m Preorder Traversal: 1,2, 4,5, 3
m Postorder Traversal: 4, 5,2, 3,1

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 13 /37

Introduction to Trees Inorder Traversal in C

Inorder Traversal in C

1 void inorder(struct Nodex root) {
2 if (root != NULL) {

3 inorder (root—>left);

4 printf("%d —>", root—>data);
5 inorder (root—>right);
6
7
8

}

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures

teg crest

14 /37

Introduction to Trees Preorder Traversal in C

Preorder Traversal in C

1 void preorder(struct Nodex root) {
2 if (root != NULL) {

3 printf("%d —>", root—>data);
4 preorder (root—>left);

5 preorder (root—>right);
6
7
8

}

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures

teg crest

15 /37

Introduction to Trees Postorder Traversal in C

Postorder Traversal in C

1 void postorder(struct Nodex root) {
2 if (root != NULL) {

3 postorder (root—>left);

4 postorder (root—>right);

5 printf("%d —>", root—>data);
6
7
8

}

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 16 / 37

Introduction to Trees Postorder Traversal in C

Deletion in a Binary Search Tree

m Case 1: Deleting a leaf node (no children).
m Case 2: Deleting a node with one child.

m Case 3: Deleting a node with two children (find in-order
successor or predecessor).

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 17 /37

Introduction to Trees Postorder Traversal in C

Example: Deletion in a BST

ORRORNGEE™

m Case 1: Deleting a Leaf Node, Delete 20
m Case 2: Deleting a Node with One Child, Delete 70
m Case 3: Deleting a Node with Two Children, Delete 50
tegcrest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 18 /37

Introduction to Trees Postorder Traversal in C

Detailed Explanation of Deletion Cases

m Case 1: Deleting a Leaf Node
Example: Delete node 20. Since it has no children, simply
remove the node.

m Case 2: Deleting a Node with One Child
Example: Delete node 70. Replace the node with its only child
(80).

m Case 3: Deleting a Node with Two Children
Example: Delete node 50. Replace the node with its in-order
successor (60), and adjust the tree.

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 19 /37

Introduction to Trees Deletion in Binary Search Tree

Deletion in Binary Search Tree

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22}

struct Nodex deleteNode(struct Nodex root, int key) {

if (root = NULL) return root;

if (key < root—>data)

root—>left = deleteNode(root—>left , key);
else if (key > root—>data)

root—>right = deleteNode(root—>right , key):

else {

if (root—>left == NULL) {
struct Nodex temp = root—>right;
free(root);
return temp;

} else if (root—>right — NULL) {
struct Nodex temp = root—>left;
free(root); return temp;

struct Nodex temp = minValueNode(root—>right);
root—>data = temp—>data;
root—>right = deleteNode(root—>right , temp—>data);

}

return root; ast

) Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 20 /37

Introduction to Trees Deletion in Binary Search Tree

minValueNode() Function in C

struct Nodex minValueNode(struct Nodex node) {
struct Nodex current = node;

1
2
3
4 // Find the leftmost leaf

5 while (current && current—>left != NULL)
6 current = current—>left;

7

8

9

return current;

}

10

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 21 /37

Iterative Algorithms in a BST

lterative Algorithms

Binary Search Trees

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 22 /37

Iterative Algorithms in a BST

lterative Inorder Traversal

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

m Inorder Traversal: Left subtree, Root, Right subtree.

m Use an explicit stack to simulate the recursive behavior.

void iterativelnorder(struct Nodex root) {
struct Nodex current = root;
struct Stack* stack = createStack (MAX HEIGHT) ;
while (!isEmpty(stack) || current != NULL) {
if (current != NULL) {
push(stack , current);
current = current—>left;
} else {
current = pop(stack);
printf("%d —>", current—>data);
current = current—>right;
3
}
¥

wyg urest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 23 /37

Iterative Algorithms in a BST

lterative Preorder Traversal

m Preorder Traversal: Root, Left subtree, Right subtree.

m Use an explicit stack to simulate recursive preorder traversal.

1 void iterativePreorder(struct Nodex root) {
2 if (root = NULL) return;
3 struct Stackx stack = createStack (MAX_ HEIGHT) ;
4 push(stack, root);
5
6 while (!isEmpty(stack)) {
7 struct Nodex current = pop(stack);
8 printf("%d —>", current—>data);
9
10 if (current—>right != NULL) push(stack, current—>right);
11 if (current—>left != NULL) push(stack, current—>left);
12 }
13 }
14
teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 24 /37

Iterative Algorithms in a BST

lterative Postorder Traversal

m Postorder Traversal: Left subtree, Right subtree, Root.
m Use two stacks to simulate the recursive behavior.

1 void iterativePostorder(struct Nodex root) {

2 if (root = NULL) return;

3 struct Stackx sl = createStack (MAX HEIGHT) ;

4 struct Stack* s2 = createStack (MAX HEIGHT) ;

5

6 push(sl, root);

7 while (lisEmpty(sl)) {

8 struct Nodex current = pop(sl);

9 push(s2, current);

10

11 if (current—>left != NULL) push(sl, current—>left);

12 if (current—>right != NULL) push(sl, current—>right);

13 }

14

15 while (lisEmpty(s2)) {

16 struct Nodex node = pop(s2);

17 printf("%d —>", node—>data);

18 } ast
19 }

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 25 /37

Iterative Algorithms in a BST Iterative Search in BST

lterative Search in BST

m Search for a key in the Binary Search Tree using a loop.
m Traverse left if the key is smaller than the current node.
m Traverse right if the key is larger.

1 struct Nodex iterativeSearch(struct Nodex root, int key) {
2 while (root != NULL) {

3 if (root—>data == key)

4 return root;

5 else if (key < root—>data)
6 root = root—>left;

7 else

8 root = root—>right;

9 }

10 return NULL;

11}

12
tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 26 /37

Iterative Algorithms in a BST Iterative Deletion in BST

lterative Deletion in BST

m Delete a node in a Binary Search Tree iteratively.

m Handle three cases: node to be deleted has no child, one child,
or two children.

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 27 /37

15
16
17
18
19

Iterative Algorithms in a BST Iterative Deletion in BST

lterative Deletion Algorithm in BST |

struct Nodex deleteNodelterative(struct Nodex root, int key) {
struct Nodex parent = NULL;

struct Nodex x current = root;
while (current != NULL && current—>data != key) {
parent = current;
if (key < current—>data)
current = current—>left ;
else
current = current—>right;
if (current == NULL) return root; // Node not found
if (current—>left == NULL || current—>right = NULL) {
struct Nodex newCurr = (current—>left) ? current—>left

current—>right;

if (parent — NULL)

return newCurr;
if (current = parent—>left)
parent—>left = newCurr;

else

Laltu Sardar (lIAl, TCG Crest)

Intro to Programming & Data Structures

o st

28 /37

Iterative Algorithms in a BST Iterative Deletion in BST

lterative Deletion Algorithm in BST Il

20 parent—>right = newCurr;

21 free(current);

22 } else {

23 struct Nodex successor = minValueNode(current—>right);
24 int successorData = successor—>data;

25 deleteNodelterative (root, successorData);
26 current—>data = successorData;

27 }

28 return root;

20 }

30

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 29 /37

Iterative Algorithms in a BST Iterative Deletion in BST

minValueNode() Function in BST

m The ‘minValueNode()® function finds the smallest node in a
subtree.

m This is useful when deleting a node with two children.

struct Nodex minValueNode(struct Nodex node) {

1
2 struct Nodex current = node;

3 while (current && current—>left I= NULL)
4 current = current—>left ;

5 return current;

6 }

7

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 30 /37

Complexity Analysis

Complexity Analysis
of
of BST algorithms

teg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 31/37

Complexity Analysis

Complexities of Inorder, Preorder, and Postorder

Traversals

m Time Complexity: O(n)
m Each node is visited once.
m Space Complexity:
m Recursive Traversal: O(h), where h is the height of the tree.
m lterative Traversal: O(h), as an explicit stack is used to
simulate recursion.
m Best Case:
m For a balanced BST, the height h is O(log n), making the space
complexity O(log n).
m Worst Case:
m In a skewed tree, the height h can be O(n), leading to O(n)
space complexity. tegcrest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 32/37

Complexity Analysis Search Complexity

Complexity of Search in a BST

m Time Complexity:
m Best Case: O(1), when the key is found at the root.
m Average Case: O(logn), for a balanced tree.
m Worst Case: O(n), for a skewed tree.
m Space Complexity:
m Recursive Search: O(h), due to the call stack, where h is the
height of the tree.
m Iterative Search: O(1), no extra space is required aside from
the traversal.

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 33 /37

Complexity Analysis Deletion Complexity

Complexity of Deletion in a BST

m Time Complexity:
m Best Case: O(1), when deleting a node with no children.
m Average Case: O(logn), for a balanced tree.
m Worst Case: O(n), for a skewed tree.

m Space Complexity:
m Recursive Deletion: O(h), due to the call stack, where h is the

height of the tree.
m Iterative Deletion: O(1), as there is no need for recursion.

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 34 /37

Complexity Analysis Analysis of Recursive Approaches

Advantages of Recursive Algorithms

Advantages:
= Simplicity:
m Recursive code is more compact and easier to write for
tree-based operations.

m Natural fit for trees due to the recursive structure of trees
(hierarchical data).

m Clarity:

m Recursive code is often clearer and easier to understand,
particularly for beginners.

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 35 /37

Complexity Analysis Analysis of Recursive Approaches

Drawbacks of Recursive Algorithms

Drawbacks:
m Memory Overhead:

m Each recursive call adds a new frame to the call stack. For deep
trees (e.g., skewed trees), this could lead to stack overflow.

m Performance:

m Recursion may add some overhead due to function calls, and
managing the call stack.

m Stack Limitations:

m Recursive solutions can fail for very deep trees if the depth
exceeds the stack size, leading to stack overflow errors.

tcg crest

Laltu Sardar (lIAl, TCG Crest) Intro to Programming & Data Structures 36 /37

il
A\ \f I\/\
-~ THANK YOU

FOR YOUR ATTENTION

J/{ >>] 7l ‘mx

ﬁ

tcg crest
Dr. Laltu Sardar
laltu.sardar@tcgcrest.org
https://laltu-sardar.github.io.

https://laltu-sardar.github.io

	Introduction to Trees
	Types of Trees
	Insert in a BST
	Search in a BST
	Traversal Algorithms
	Inorder Traversal in C
	Preorder Traversal in C
	Postorder Traversal in C
	Deletion in Binary Search Tree

	Iterative Algorithms in a BST
	Iterative Search in BST
	Iterative Deletion in BST
	Iterative Deletion in BST

	Complexity Analysis
	Search Complexity
	Deletion Complexity
	Analysis of Recursive Approaches

