Singly Linked List: Problem Set Course: Introduction to Programming and Data Structures

Dr. Laltu Sardar

Institute for Advancing Intelligence (IAI), TCG Centres for Research and Education in Science and Technology (TCG Crest)

Inventing Harmonious Future

September 13, 2024

Laltu Sardar (IAI, TCG Crest) Intro to Programming & Data Structures September 13, 2024 1/22

Singly Linked List: Problem set

Important Operations on Singly Linked Lists I

Insertion:

- At the Beginning: Inserting a new node at the start of the list.
- At the End: Inserting a new node at the end of the list.
- At a Specific Position: Inserting a new node after a given node.
- Deletion:
 - From the Beginning: Removing the first node of the list.
 - From the End: Removing the last node (requires traversal to the last node).
 - From a Specific Position: Removing a node located after a specific node.

Traversal:

Forward Traversal: Accessing each node of the list from the head to the last node.

4 / 22

Important Operations on Singly Linked Lists II

Search:

- Search by Value: Finding the first node containing a specific value.
- Search by Position: Accessing the node at a particular index in the list.
- Updating:
 - Modifying the data stored in a specific node without altering the structure of the list.
- List Reversal:
 - Reversing the order of nodes in the list so that the first node becomes the last and vice versa.

Splitting:

Dividing the list into two smaller lists at a given position.

Important Operations on Singly Linked Lists III

Concatenation:

Merging two singly linked lists into a single list.

Length Calculation:

• Counting the number of nodes present in the list.

Some Linked List Problems

Problem 1: Remove Duplicates from Sorted List

Problem: Given the head of a sorted linked list, remove all duplicates such that each element appears only once. **Example:**

- $\blacksquare \text{ Input: } 1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3$
- $\blacksquare \text{ Output: } 1 \rightarrow 2 \rightarrow 3$

Problem 2: Critical Points in a Linked List

Problem: Identify critical points in a linked list. A critical point is defined as a node where the value is either strictly greater than both neighbors or strictly less.

- $\blacksquare \text{ Input: } 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 5$
- Output: Critical points at 3 and 2

Problem 3: Cycle in a Linked List

Problem: Determine if a linked list has a cycle in it. **Example:**

- Input: $3 \rightarrow 2 \rightarrow 0 \rightarrow -4$ (cycle to node 2)
- Output: True (Cycle exists)

Problem 4: Find Middle Element of Linked List

Problem: Given a singly linked list, return the middle node of the list.

Example:

Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$

Output: 3

Problem 5: Count Loop Length in Linked List

Problem: Find the length of the loop in a linked list if it exists. **Example:**

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 2$ (cycle to node 2)
- Output: 3 (Length of loop is 3)

Problem 6: Sort a linked list

Problem: Sort a linked list using any sorting algorithm (E.g., merge sort, quick sort, etc.).

- Input: $4 \rightarrow 2 \rightarrow 1 \rightarrow 3$
- Output: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Problem 7: Separate Even and Odd values in a linked list

Problem: Separate the even and odd values of the linked list, maintaining their relative order.

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- $\blacksquare \text{ Output: } 2 \rightarrow 4 \rightarrow 1 \rightarrow 3$

Problem 8: Find Intersection of two linked lists

Problem: Find the node where two singly linked lists intersect. **Example:**

- List 1: $1 \rightarrow 9 \rightarrow 1 \rightarrow 2 \rightarrow 4$
- List 2: $3 \rightarrow 2 \rightarrow 4$
- Output: Node with value 2

Problem 9: Rotate the List

Problem: Rotate the linked list to the right by k places. **Example:**

- \blacksquare Input: 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5, k = 2
- Output: $4 \rightarrow 5 \rightarrow 1 \rightarrow 2 \rightarrow 3$

Problem 10: Reverse The Linked List

Problem: Reverse the entire linked list. **Example:**

- \blacksquare Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$
- \blacksquare Output: 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1

Problem 11: Reverse the Segment

Problem: Reverse a portion of the linked list from position m to n. **Example:**

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, m = 2, n = 4
- \blacksquare Output: $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 5$

Problem 12: Find Next Smaller value in Linked List

Problem: For each node, find the next node in the linked list with a smaller value.

- Input: $5 \rightarrow 3 \rightarrow 8 \rightarrow 2$
- Output: $3 \rightarrow 2 \rightarrow 2 \rightarrow -1$

Problem 13: Flatten a Linked List

Problem: Flatten a linked list where each node contains a pointer to another linked list.

- Input: $1 \rightarrow 2 \rightarrow 3$, and 1 points to list: $4 \rightarrow 5$
- \blacksquare Output: $1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3$

Problem 14: Reverse m size groups

Problem: Reverse the nodes in a linked list in groups of size m. **Example:**

- $\blacksquare \text{ Input: } 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5, \text{ m} = 3$
- $\blacksquare \text{ Output: } 3 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 5$

Dr. Laltu Sardar laltu.sardar@tcgcrest.org https://laltu-sardar.github.io.