
Representations of Integer and Floating Points
Course: Introduction to Programming and Data Structures

Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

August 20, 2024

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 1 / 44

Signed Integers: Representations

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 2 / 44

Storing Positive Numbers

Storing Positive Numbers in 2’s Complement

Positive numbers are stored in binary.
The first bit is the sign bit (0 for positive numbers).
Example: Storing 18 in an 8-bit system:

18→ 10010→ 0001 0010

The binary representation of 18 is 0001 0010.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 3 / 44

Storing Negative Numbers

Storing Negative Numbers in 2’s Complement

Negative numbers are stored by:
1 Converting the positive number to binary.
2 Inverting the bits.
3 Adding 1 to the result.

Example: Storing −18 in an 8-bit system:

18→ 0001 0010

Invert: 1110 1101

Add 1: 1110 1110

The binary representation of −18 is 1110 1110.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 4 / 44

Storing Negative Numbers

Conversion Table with 2’s Complement

Decimal Bin Flipped Bits 2’s Complement -ve
0 0000 0000 1111 1111 0000 0000 0
1 0000 0001 1111 1110 1111 1111 -1
2 0000 0010 1111 1101 1111 1110 -2

64 0100 0000 1011 1111 1100 0000 -64

126 0111 1110 1000 0001 1000 0010 -126
127 0111 1111 1000 0000 1000 0001 -127

128 1000 0000 0111 1111 1000 0000 -128

Table: Conversion Table with 2’s Complement

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 5 / 44

Adding Two Numbers in 2’s Complement Positive + Positive

Adding Positive + Positive Numbers

Adding 18 and 12:
18→ 0001 0010

12→ 0000 1100

Sum: 0001 1110 (30 in decimal)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 6 / 44

Adding Two Numbers in 2’s Complement Positive + Negative

Adding Positive + Negative Numbers

Adding 18 and −12:

18→ 0001 0010

−12→ 1111 0100

Sum: 0000 0110 (6 in decimal)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 7 / 44

Adding Two Numbers in 2’s Complement Negative + Negative

Adding Negative + Negative Numbers

Adding −18 and −12:

−18→ 1110 1110

−12→ 1111 0100

Sum: 1110 0010 (−30 in decimal)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 8 / 44

Handling Overflows Positive + Positive Overflow

Overflow in Positive + Positive Addition

Adding 70 and 70:
70→ 0100 0110

70→ 0100 0110

Sum: 1000 1100 (This is − 116, overflow!)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 9 / 44

Handling Overflows Negative + Negative Overflow

Overflow in Negative + Negative Addition

Adding −70 and −70:

−70→ 1011 1010

−70→ 1011 1010

Sum: 0111 0100 (This is + 116, overflow!)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 10 / 44

Overflow in Multiplication

Overflow During Multiplication

Multiplying 20 and 15:

20→ 0001 0100

15→ 0000 1111

Result needs more than 8 bits:

20× 15 = 300→ 100101100 (requires 9 bits)

Overflow occurs as the result cannot be stored in 8 bits.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 11 / 44

Overflow in Multiplication

How Overflows are handled in C?

Signed int: Undefined
Unsigned int: Undefined – Wrap around

Does Nothing– Keep as it is
Use Wisely

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 12 / 44

Overflow in Multiplication

Floating Point Representation

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 13 / 44

Floating Point Representation

Why Integers Are Not Sufficient?

Integers can only represent whole numbers.
Real-world applications require representation of fractional
values, very large numbers, and very small numbers.
Examples:

3.14 (pi)
0.000001 (small decimal)
1.5 (fractional number)

Integers cannot represent these values, hence the need for
floating-point representation.

Floating-point representation allows for a wide range of numbers.
It balances between the range and precision needed in
computations.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 14 / 44

Floating Point Representation

Main Idea Behind Floating Point Representation

Floating-point numbers are represented using three components:

Sign bit
Exponent [Excess-N representation]
Significand (Mantissa)

Similar to scientific notation:

value = (−1)sign × baseexponent × fraction

Trade-off between range and precision.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 15 / 44

Floating Point Representation

32-bit IEEE Floating Point Format

32-bit format, also known as single-precision.
Components:

Sign bit: 1 bit
Exponent: 8 bits (with a bias of 127)
Mantissa: 23 bits (implied leading 1)

Representation (Normal):

value = (−1)sign × 2(exponent+127) × (1.mantissa)

Computation (Normal):

value = (−1)sign × 2(exponent−127) × (1 + fraction)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 16 / 44

Floating Point Representation

32-bit IEEE Floating Point Format

Subnormal form: Represent numbers very close to zero,
providing a “smooth" transition to zero, but at the cost of
precision.
Components:

Sign bit: 1 bit
Exponent: 0000 0000, is fixed at -126
Mantissa: 23 bits (implied leading 1)

Computation (Normal):

value = (−1)sign × 2−126 × (0 + fraction)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 17 / 44

Example:

Presenting -18.625

We’ll represent the number -18.625 in the IEEE 754
single-precision (32-bit) floating-point format.
The process involves

1 converting the number to binary,
2 normalizing it,
3 determining the sign bit, exponent, and mantissa, and
4 combining these components into the final 32-bit representation.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 18 / 44

Example:

Step 1: Converting the Number to Binary

Convert the integer part (18) to binary:

1810 = 100102

Convert the fractional part (0.625) to binary:

0.62510 = 0.1012

Combine both parts:

−18.62510 = −10010.1012

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 19 / 44

Example:

Step 2: Normalize the Binary Number

Normalize 10010.1012 to the form 1.xxxxx × 2n:

10010.1012 = 1.00101012 × 24

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 20 / 44

Example:

Step 3: Determine the Sign Bit

The sign bit is ‘1‘ for negative numbers.
For -18.625, the sign bit is:

Sign bit = 1

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 21 / 44

Example:

Step 4: Determine the Exponent

The exponent n is 4.
Add the bias (127 for single-precision):

Exponent = 4 + 127 = 13110 = 100000112

It is called

Excess-127 Representation
Excess to 127

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 22 / 44

Example:

Excess-127 Representation

The exponent in single precision uses Excess-127.
The stored exponent is calculated as:

Estored = Eactual + 127

This allows representation of both positive and negative
exponents.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 23 / 44

Example:

Example: Representation of Eactual = 5

Given Eactual = 5:

Estored = 5 + 127 = 132

Binary representation of 132:

13210 = 100001002

The exponent field in IEEE 754 format will be 10000100.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 24 / 44

Example:

Example: Representation of Eactual = −3

Given Eactual = −3:

Estored = −3 + 127 = 124

Binary representation of 124:

12410 = 011111002

The exponent field in IEEE 754 format will be 01111100.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 25 / 44

Example:

2’s Complement vs Excess-127

Decimal Binary Excess-127 Excess-127
Values (2’s Complement) (Stored) (Actual)
-128 10000000 00000000 -127
-3 11111101 01111110 -3
-1 11111111 01111111 -1
0 00000000 01111111 0
1 00000001 10000000 1
3 00000011 10000010 3

127 01111111 11111110 127
128 ——– 11111111 128 (Reserved)

Table: Comparison of 2’s Complement and Excess-127 Representations for
8-bit Numbers

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 26 / 44

Example:

Step 5: Determine the Mantissa (Significand)

The mantissa is the fractional part of the normalized number,
excluding the leading 1.
For 1.00101012, the mantissa is:

Mantissa = 00101010000000000000000

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 27 / 44

Example:

Step 6: Combine the Components

Combine the sign bit, exponent, and mantissa into a 32-bit
binary number:

1 10000011 00101010000000000000000

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 28 / 44

Example:

Final Representation

The IEEE 754 single-precision floating-point representation of
-18.625 is:

1 10000011 00101010000000000000000

In hexadecimal, it can be written as:

C12A800016

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 29 / 44

special case

Special Case

IEEE 754 standard defines the representation of floating-point
numbers, including special cases like zero, infinity, and NaN (Not
a Number)

Estored = 0 = 000000002: Represents subnormal numbers.
Estored = 255 = 111111112: Represents infinity or NaN (Not a
Number).

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 30 / 44

special case

Zero (± 0) Representation

Single-Precision (32-bit):
Sign bit: 0 for +0, 1 for -0
Exponent: All bits are 0 (00000000)
Mantissa: All bits are 0 (00000000000000000000000)
+0: ‘0 00000000 00000000000000000000000‘ (Hex:
‘0x00000000‘)
-0: ‘1 00000000 00000000000000000000000‘ (Hex:
‘0x80000000‘)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 31 / 44

special case

Infinity (±∞) Representation

Single-Precision (32-bit):
Sign bit: 0 for +∞, 1 for -∞
Exponent: All bits are 1 (11111111)
Mantissa: All bits are 0 (00000000000000000000000)
+∞: ‘0 11111111 00000000000000000000000‘ (Hex:
‘0x7F800000‘)
-∞: ‘1 11111111 00000000000000000000000‘ (Hex:
‘0xFF800000‘)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 32 / 44

special case

Not a Number (NaN) Representation

NaN is used to represent undefined or unrepresentable values, such
as the result of 0/0 or sqrt(-1).

Sign bit: Can be 0 or 1 (doesn’t matter for NaN)
Exponent: All bits are 1 (11111111)
Mantissa: At least one non-zero bit
Quiet NaN: ‘s 11111111 1xxxxxxxxxxxxxxxxxxxxxx‘ (e.g.,
Hex: ‘0x7FC00000‘)
Signaling NaN: ‘s 11111111 0xxxxxxxxxxxxxxxxxxxxxx‘
(e.g., Hex: ‘0x7FA00000‘)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 33 / 44

special case

Smallest and Largest +ve Values in Floating Point

Smallest Positive Normalized Number:
0 00000001 00000000000000000000000

Exponent = (1-127) =-126 ; Mantissa = 0
Value = 2−126 × 1 ≈ 1.18× 10−38

Largest Positive Normalized Number:
0 11111110 11111111111111111111111

Exponent = 254-127 = 127 ;
Mantissa = 1.11 . . . 1 = 111 . . . 1× 2−23 = (224 − 1)× 2−23

Value = (2− 2−23)× 2127 ≈ 3.4× 1038

Smallest Positive Denormalized Number:
0 00000000 00000000000000000000001

Exponent = -126 (Fixed) ̸= (0− 127)
Mantissa = 2−23

Value = 2−126 × 2−23 = 2−149 ≈ 1.4× 10−45

Smallest and Largest -ve Values ?
Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 34 / 44

special case

Smallest and Largest -ve Values in Floating Point
Smallest −→←− Largest : symbols changed Only

Largest Negative Normalized Number
1 00000001 00000000000000000000000

Exponent = (1-127) =-126 ; Mantissa = 0
Value = −2−126 × 1 ≈ −1.18× 10−38

Smallest Negative Normalized Number:
1 11111110 11111111111111111111111

Exponent = 254-127 = 127 ;
Mantissa = 1.11 . . . 1 = 111 . . . 1× 2−23 = (224 − 1)× 2−23

Value = −(2− 2−23)× 2127 ≈ −3.4× 1038

Largest Positive Denormalized Number:
1 00000000 00000000000000000000001

Exponent = -126 (Fixed) ̸= (0− 127)
Mantissa = 2−23

Value = −2−126 × 2−23 = −2−149 ≈ −1.4× 10−45

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 35 / 44

special case

Floating Point – Rounding off

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 36 / 44

Rounding off Decimal Numbers

IEEE 754 32-bit Floating Point Format

32-bit floating-point representation consists of:
1 bit for the sign
8 bits for the exponent (with a bias of 127)
23 bits for the mantissa (fraction)

Normalized form: (−1)sign × 1.mantissa× 2(exponent−127)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 37 / 44

Rounding in IEEE 754

Rounding in IEEE 754

Rounding is necessary when the exact binary representation
exceeds 23 bits in the mantissa.
Common rounding modes:

Round to Nearest, ties to Even (default)
Round toward Zero (truncation)
Round toward Positive Infinity
Round toward Negative Infinity

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 38 / 44

Rounding in IEEE 754

Example

3.18

Number Line View Of Rounding Methods

0 +∞-∞

0 +∞-∞

0 +∞-∞

0 +∞-∞

Round to

Nearest

Round to Zero

Round to

+Infinity

Round to -

Infinity

Green lines are FP results that fall between two

representable values (dots) and thus need to be rounded

-3.75 +5.8

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 39 / 44

Example 1: Rounding 4.7

Example 1: Rounding 4.7

Convert 4.7 to binary: 4.7 ≈ 100.1011001100110011 . . .2
Normalize: 1.001011001100110011 . . .× 22

Fit mantissa into 23 bits:

1.00101100110011001100110 (truncated)

Assemble IEEE 754 representation:
Sign: 0
Exponent: 2 + 127 = 129, binary: 10000001
Mantissa: 00101100110011001100110

Final result: 0 | 10000001 | 00101100110011001100110

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 40 / 44

Example 2: Rounding 0.1

Example 2: Rounding 0.1

Convert 0.1 to binary: 0.1 ≈ 0.00011001100110011 . . .2
Normalize: 1.1001100110011 . . .× 2−4

Fit mantissa into 23 bits:

1.10011001100110011001110 (rounded)

Assemble IEEE 754 representation:
Sign: 0
Exponent: −4 + 127 = 123, binary: 01111011
Mantissa: 10011001100110011001110

Final result: 0 | 01111011 | 10011001100110011001110

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 41 / 44

IEEE 754 Rounding Method

Default Method:

Different versions use different methods
Default Method: Round-to-Nearest-Even (old)

Round-to-Nearest-Even
1 If the digit after the place you are rounding to is less than 5, you

round down. 2.4→ 2
2 If it’s 5 or greater, you round up. 2.6→ 3
3 If a number is exactly halfway between two rounding options, it

gets rounded to the nearest even number.
1 2.5 rounds to 2 (because 2 is even).
2 3.5 rounds to 4 (because 4 is even).
3 4.5 rounds to 4 (because 4 is even).
4 5.5 rounds to 6 (because 6 is even).

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 42 / 44

Effect of Associativity in Arithmetic Operations

Effect of Associativity in Arithmetic Operations

Due to rounding, floating-point arithmetic is not strictly
associative.
Example: Addition

(a+ b) + c ̸= a+ (b + c) in floating-point arithmetic.
Example: Let a = 1.0× 1010, b = −1.0× 1010, c = 1.0.
(a+ b) + c = 1.0 (Correct)
a+ (b + c) = 0.0 (Incorrect due to loss of significance)

Example: Multiplication
(a× b)× c ̸= a× (b × c) in floating-point arithmetic.
Example: Let a = 1.0× 10−5, b = 1.0× 105, c = 1.0× 10−10.
(a× b)× c = 1.0× 10−10 (Correct)
a× (b × c) = 1.0× 10−15 (Incorrect due to rounding)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 43 / 44

Examples of Rounding in Operations

Examples of Rounding in Operations

Addition/Subtraction Example:
a = 1.23456789, b = 1.0× 10−7

Result: a+ b = 1.23456789 (rounded)
Multiplication/Division Example:

a = 1.23456789, b = 1.23456789
Result: a× b = 1.524157875019... (rounded)
After rounding: 1.52415788

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 20, 2024 44 / 44

	Storing Positive Numbers
	Storing Negative Numbers
	Adding Two Numbers in 2's Complement
	Positive + Positive
	Positive + Negative
	Negative + Negative

	Handling Overflows
	Positive + Positive Overflow
	Negative + Negative Overflow

	Overflow in Multiplication
	Floating Point Representation
	Example:
	special case
	Rounding off Decimal Numbers
	Rounding in IEEE 754
	Example 1: Rounding 4.7
	Example 2: Rounding 0.1
	IEEE 754 Rounding Method
	Effect of Associativity in Arithmetic Operations
	Examples of Rounding in Operations

