Representations of Integer and Floating Points Course: Introduction to Programming and Data Structures

Laltu Sardar

Institute for Advancing Intelligence (IAI), TCG Centres for Research and Education in Science and Technology (TCG Crest)

Inventing Harmonious Future

August 20, 2024

tce c vention Harmscieus Futun

Signed Integers: Representations

Storing Positive Numbers in 2's Complement

- **Positive numbers are stored in binary.**
- The first bit is the sign bit (0 for positive numbers).
- Example: Storing 18 in an 8-bit system:

 $18 \rightarrow 10010 \rightarrow 0001 0010$

The binary representation of 18 is 0001 0010.

Storing Negative Numbers in 2's Complement

Negative numbers are stored by:

- **1** Converting the positive number to binary.
- 2 Inverting the bits.
- **3** Adding 1 to the result.
- Example: Storing -18 in an 8-bit system:

 $18 \rightarrow 0001 0010$

Invert: 1110 1101

Add 1: 1110 1110

The binary representation of -18 is 1110 1110.

Conversion Table with 2's Complement

Table: Conversion Table with 2's Complement

Adding Positive $+$ Positive Numbers

 $\mathcal{L}_{\mathcal{A}}$ Adding 18 and 12:

 $18 \rightarrow 0001 0010$ $12 \rightarrow 0000$ 1100 Sum: 0001 1110 (30 in decimal)

Adding Positive + Negative Numbers

Adding 18 and -12 : $\mathcal{C}^{\mathcal{A}}$

$18 \rightarrow 0001 0010$ $-12 \rightarrow 1111 0100$ Sum: 0000 0110 (6 in decimal)

Adding Negative $+$ Negative Numbers

$$
\blacksquare
$$
 Adding -18 and -12 :

$-18 \rightarrow 1110 1110$ $-12 \rightarrow 1111 0100$ Sum: 1110 0010 (-30 in decimal)

Overflow in Positive $+$ Positive Addition

$\mathcal{L}_{\mathcal{A}}$ Adding 70 and 70:

$70 \rightarrow 0100 0110$ $70 \rightarrow 0100 0110$ Sum: $1000 1100$ (This is -116 , overflow!)

Overflow in Negative $+$ Negative Addition

$$
\blacksquare
$$
 Adding -70 and -70 :

$-70 \rightarrow 1011 1010$ $-70 \rightarrow 1011 1010$ Sum: 0111 0100 (This is $+116$, overflow!)

Overflow During Multiplication

Multiplying 20 and 15:

 $20 \rightarrow 0001$ 0100

 $15 \rightarrow 0000$ 1111

Result needs more than 8 bits:

 $20 \times 15 = 300 \rightarrow 100101100$ (requires 9 bits)

tcg c overtioz Harmscinus Future

Overflow occurs as the result cannot be stored in 8 bits.

How Overflows are handled in \overline{C} ?

- Signed int: Undefined
- **Unsigned int: Undefined Wrap around**

Does Nothing– Keep as it is Use Wisely

Floating Point Representation

Why Integers Are Not Sufficient?

- Integers can only represent whole numbers.
- Real-world applications require representation of fractional values, very large numbers, and very small numbers.
- Examples:
	- \blacksquare 3.14 (pi)
	- 0.000001 (small decimal)
	- 1.5 (fractional number)
- Integers cannot represent these values, hence the need for floating-point representation.
- Floating-point representation allows for a wide range of numbers.
- It balances between the range and precision needed in computations.

entios Harmacious Future

tce crest

Main Idea Behind Floating Point Representation

Floating-point numbers are represented using three components:

- Sign bit
- Exponent [Excess-N representation]
- Significand (Mantissa)
- Similar to scientific notation:

value $=(-1)^{\mathsf{sign}} \times \mathsf{base}^{\mathsf{exponent}} \times \mathsf{fraction}$

tce r

Trade-off between range and precision.

32-bit IEEE Floating Point Format

- 32-bit format, also known as single-precision.
- Components:
	- Sign bit: 1 bit
	- Exponent: 8 bits (with a bias of 127)
	- **Mantissa: 23 bits (implied leading 1)**
- Representation (Normal):

$$
\text{value} = (-1)^{\text{sign}} \times 2^{(\text{exponent} + 127)} \times (1.\text{mantissa})
$$

Computation (Normal): $\mathcal{L}_{\mathcal{A}}$

$$
\text{value} = (-1)^{\text{sign}} \times 2^{(\text{exponent} - 127)} \times (1 + \text{fraction})
$$

tcg ci Invention Harmoninus Future

Laltu Sardar (IAI, TCG Crest) [Intro to Programming & data Structures](#page-0-0) August 20, 2024 16/44

32-bit IEEE Floating Point Format

- **B** Subnormal form: Represent numbers very close to zero, providing a "smooth" transition to zero, but at the cost of precision.
- **Components:**
	- Sign bit: 1 bit
	- **Exponent: 0000 0000, is fixed at -126**
	- **Mantissa: 23 bits (implied leading 1)**
- Computation (Normal):

$$
\text{value} = (-1)^{\text{sign}} \times 2^{-126} \times (0 + \text{fraction})
$$

tce c verting Harmsteinus Future

Presenting -18.625

- We'll represent the number -18.625 in the IEEE 754 single-precision (32-bit) floating-point format.
- \blacksquare The process involves
	- converting the number to binary,
	- 2 normalizing it,
	- 3 determining the sign bit, exponent, and mantissa, and
	- 4 combining these components into the final 32-bit representation.

Step 1: Converting the Number to Binary

Convert the integer part (18) to binary:

 $18_{10} = 10010_2$

Convert the fractional part (0.625) to binary:

 $0.625_{10} = 0.101_{2}$

Combine both parts:

$$
-18.625_{10}=-10010.101_{2} \\
$$

Step 2: Normalize the Binary Number

Normalize 10010.101_2 to the form $1.xxxxx \times 2^n$:

 $10010.101_2 = 1.0010101_2 \times 2^4$

Step 3: Determine the Sign Bit

The sign bit is '1' for negative numbers. $\overline{\mathcal{A}}$ For -18.625 , the sign bit is:

Sign bit $= 1$

Step 4: Determine the Exponent

- \blacksquare The exponent *n* is 4.
- Add the bias (127 for single-precision):

```
Exponent = 4 + 127 = 131_{10} = 10000011_2
```
It is called

Excess-127 Representation Excess to 127

Excess-127 Representation

- The exponent in single precision uses Excess-127.
- The stored exponent is calculated as:

$$
E_{\mathsf{stored}} = E_{\mathsf{actual}} + 127
$$

This allows representation of both positive and negative $\mathcal{L}_{\mathcal{A}}$ exponents.

> tcg crest Inverting Harmonique Future

Example: Representation of $E_{\text{actual}} = 5$

Siven
$$
E_{actual} = 5
$$
:

$$
E_{\footnotesize{\text{stored}}} = 5 + 127 = 132
$$

Binary representation of 132:

 $132_{10} = 10000100$

The exponent field in IEEE 754 format will be 10000100. $\overline{}$

Example: Representation of $E_{\text{actual}} = -3$

Given
$$
E_{actual} = -3
$$
:

$$
E_{\rm stored}=-3+127=124
$$

Binary representation of 124:

 $124_{10} = 01111100_2$

The exponent field in IEEE 754 format will be 01111100. $\overline{}$

2's Complement vs Excess-127

Table: Comparison of 2's Complement and Excess-127 Representations for 8-bit Numbers tcg crest

Laltu Sardar (IAI, TCG Crest) [Intro to Programming & data Structures](#page-0-0) August 20, 2024 26/44

Invertion Harmscieus Future

Step 5: Determine the Mantissa (Significand)

- The mantissa is the fractional part of the normalized number, excluding the leading 1.
- For $1.0010101₂$, the mantissa is:

M antissa $= 0.01010100000000000000$

Step 6: Combine the Components

■ Combine the sign bit, exponent, and mantissa into a 32-bit binary number:

1 10000011 00101010000000000000000

Final Representation

■ The IEEE 754 single-precision floating-point representation of -18.625 is:

1 10000011 00101010000000000000000

\blacksquare In hexadecimal, it can be written as:

C12A8000₁₆

Special Case

- IEEE 754 standard defines the representation of floating-point numbers, including special cases like zero, infinity, and NaN (Not a Number)
- $E_{\text{stored}} = 0 = 00000000$: Represents subnormal numbers.
- $E_{\text{stored}} = 255 = 11111111_2$: Represents infinity or NaN (Not a Number).

Zero (± 0) Representation

Single-Precision (32-bit):

- Sign bit: 0 for $+0$, 1 for -0
- Exponent: All bits are 0 (00000000)
- Mantissa: All bits are 0 (00000000000000000000000)
- **+0:** '0 00000000 00000000000000000000000' (Hex: $'(0 \times 000000000)$
- **-0:** '1 00000000 00000000000000000000000' (Hex: '0x80000000')

Infinity ($\pm \infty$) Representation

Single-Precision (32-bit):

- Sign bit: 0 for $+\infty$, 1 for $-\infty$
- Exponent: All bits are 1 (11111111)
- Mantissa: All bits are 0 (00000000000000000000000)
- **+∞:** '0 11111111 00000000000000000000000' (Hex: '0x7F800000')
- **-∞:** '1 11111111 00000000000000000000000' (Hex: '0xFF800000')

Not a Number (NaN) Representation

NaN is used to represent undefined or unrepresentable values, such as the result of $0/0$ or sqrt (-1) .

- Sign bit: Can be 0 or 1 (doesn't matter for NaN)
- Exponent: All bits are 1 (11111111)
- **Mantissa: At least one non-zero bit**
- **Quiet NaN:** 's 11111111 1xxxxxxxxxxxxxxxxxxxxxx' (e.g., Hex: '0x7FC00000')
- **Signaling NaN: ** 's 11111111 0xxxxxxxxxxxxxxxxxxxxxx (e.g., Hex: '0x7FA00000')

entios Harmacious Future

Smallest and Largest $+ve$ Values in Floating Point

Smallest Positive Normalized Number:

0 00000001 00000000000000000000000

$$
Example 2: Exponent = (1-127) = -126 ; Mantissa = 0
$$

$$
\blacksquare \text{ Value} = 2^{-126} \times 1 \approx 1.18 \times 10^{-38}
$$

Largest Positive Normalized Number:

0 11111110 11111111111111111111111

Example 254-127 =
$$
127
$$
;

Mantissa = $1.11\ldots 1 = 111\ldots 1 \times 2^{-23} = (2^{24}-1) \times 2^{-23}$

■ Value =
$$
(2 - 2^{-23}) \times 2^{127} \approx 3.4 \times 10^{38}
$$

Smallest Positive Denormalized Number:

0 00000000 00000000000000000000001

Example 2 Expand
$$
= -126
$$
 (Fixed) \neq (0 – 127)

$$
\blacksquare \text{ Mantissa} = 2^{-23}
$$

 $\textsf{Value} = 2^{-126} \times 2^{-23} = 2^{-149} \approx 1.4 \times 10^{-45}$

Smallest and Largest -ve Values ?

Smallest and Largest -ve Values in Floating Point

Smallest \rightleftarrows Largest : symbols changed Only

E Largest Negative Normalized Number

- 1 00000001 00000000000000000000000
	- **Exponent** = $(1-127) = -126$; Mantissa = 0
	- Value $=-2^{-126}\times1\approx-1.18\times10^{-38}$
- **Smallest Negative Normalized Number:**

1 11111110 11111111111111111111111

Exponent =
$$
254-127 = 127
$$
;

- Mantissa = $1.11\ldots1 = 111\ldots1 \times 2^{-23} = (2^{24}-1) \times 2^{-23}$
- Value $=-(2-2^{-23})\times2^{127}\approx-3.4\times10^{38}$

Largest Positive Denormalized Number:

- 1 00000000 00000000000000000000001
	- **Exponent = -126 (Fixed)** \neq (0 127)
	- Mantissa $= 2^{-23}$
	- Value $= -2^{-126} \times 2^{-23} = -2^{-149} \approx -1.4 \times 10^{-45}$

Floating Point – Rounding off

IEEE 754 32-bit Floating Point Format

32-bit floating-point representation consists of:

- \blacksquare 1 bit for the sign
- \blacksquare 8 bits for the exponent (with a bias of 127)
- 23 bits for the mantissa (fraction)

Normalized form: $(-1)^{\text{sign}} \times 1$.mantissa $\times 2^{(\text{exponent}-127)}$

Rounding in IEEE 754

- Rounding is necessary when the exact binary representation exceeds 23 bits in the mantissa.
- Common rounding modes:
	- Round to Nearest, ties to Even (default)
	- Round toward Zero (truncation)
	- Round toward Positive Infinity
	- Round toward Negative Infinity

Example

Example 1: Rounding 4.7

- Convert 4.7 to binary: $4.7 \approx 100.1011001100110011...$
- Normalize: $1.001011001100110011... \times 2^2$
- \blacksquare Fit mantissa into 23 bits:

1.00101100110011001100110 (truncated)

- Assemble IEEE 754 representation:
	- Sign: 0
	- Exponent: $2 + 127 = 129$, binary: 10000001
	- Mantissa: 00101100110011001100110
- **Final result: 0 | 10000001 | 00101100110011001100110**

Example 2: Rounding 0.1

- Convert 0.1 to binary: $0.1 \approx 0.00011001100110011...$
- Normalize: $1.1001100110011... \times 2^{-4}$
- \blacksquare Fit mantissa into 23 bits:

1.10011001100110011001110 (rounded)

- Assemble IEEE 754 representation:
	- Sign: 0
	- **Exponent:** $-4 + 127 = 123$, binary: 01111011
	- Mantissa: 10011001100110011001110

Final result: 0 01111011 | 10011001100110011001110

Default Method:

- Different versions use different methods
- Default Method: Round-to-Nearest-Even (old)

Round-to-Nearest-Even

- **1** If the digit after the place you are rounding to is less than 5, you round down. $2.4 \rightarrow 2$
- 2 If it's 5 or greater, you round up. $2.6 \rightarrow 3$
- 3 If a number is exactly halfway between two rounding options, it gets rounded to the nearest even number.

¹ 2.5 rounds to 2 (because 2 is even).

- 2 3.5 rounds to 4 (because 4 is even).
- 3 4.5 rounds to 4 (because 4 is even).
- 4 5.5 rounds to 6 (because 6 is even).

Effect of Associativity in Arithmetic Operations

- Due to rounding, floating-point arithmetic is not strictly associative.
- Example: Addition
	- $(a + b) + c \neq a + (b + c)$ in floating-point arithmetic.
	- Example: Let $a = 1.0 \times 10^{10}$, $b = -1.0 \times 10^{10}$, $c = 1.0$.

$$
(a + b) + c = 1.0
$$
 (Correct)

- \bullet a + (b + c) = 0.0 (Incorrect due to loss of significance)
- Example: Multiplication
	- $(a \times b) \times c \neq a \times (b \times c)$ in floating-point arithmetic.
	- Example: Let $a = 1.0 \times 10^{-5}$, $b = 1.0 \times 10^{5}$, $c = 1.0 \times 10^{-10}$.

$$
(a \times b) \times c = 1.0 \times 10^{-10} \text{ (Correct)}
$$

a \times ($b \times c$) = 1.0 \times 10⁻¹⁵ (Incorrect due to rounding)

Examples of Rounding in Operations

- Addition/Subtraction Example:
	- **a** = 1.23456789, $b = 1.0 \times 10^{-7}$
	- Result: $a + b = 1.23456789$ (rounded)
- Multiplication/Division Example:
	- $a = 1.23456789$, $b = 1.23456789$
	- Result: $a \times b = 1.524157875019...$ (rounded)
	- After rounding: 1.52415788

