
Basic Ubuntu Commands and Syntax of C
Course: Introduction to Programming and Data Structures

Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

August 13, 2024

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 1 / 50

Basic Ubuntu Commands

Basic Ubuntu Commands

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 2 / 50

Basic Ubuntu Commands Frequently used Commands

List files/directories and change path

For windows: install mobaxterm or WSL
1 $ pwd → Print Working Directory
2 $ ls → List : print the list of files and directories in current path
3 $ ls <targetDirPath> → List : print the list of files and

directories in the targeted directory Path
4 $ cd → Change working directory to Home directory.
5 $ cd <targetDirPath> → Change working directory to targeted

directory
6 $ cd . → Change to Current directory
7 $ cd .. → Change to Parent directory

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 3 / 50

Basic Ubuntu Commands Frequently used Commands

Make/Delete/Copy a file/directory

$ cp <srcFilePath> <destFilePath> → COPY a File at
srcFilePath to destFilePath
$ cp -r <srcDirPath> <destDirPath> → COPY a directory
$ exit, ∧d → EXIT an ongoing program
$ mkdir <directoryName> → MAKE the directory
$ rmdir <directoryName> → REMOVE the directory
$ rm <fileName> → REMOVE the file fileName
$ rmdir <directoryName> → REMOVE the directory
$ rm -r <directoryName> → REMOVE the directory
$ mv <srcFilePath> <destFilePath> → MOVE the file

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 4 / 50

Basic Ubuntu Commands Frequently used Commands

Printing Contents of a File

1 $ cat <fileName> → whole content
2 $ head <fileName> → HEAD of the file
3 $ man <cmdName> → show MANUAL of cmdName
4 Press “q” to Quit
5 $ top → Display ongoing programs
6 $ kill -9 <programID> → Kill the program with id programID
7 others– $ wget, time,

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 5 / 50

Basic Syntax of C Program

Basic Syntax of C Program

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 6 / 50

Basic Syntax of C Program C Language Introduction

Why Learn C?

label=•C is the foundation of many other programming languages. If
you learn C, you will have a better understanding of how other
languages work.

lbbel=•C is a powerful language that can be used to write a wide
variety of programs.

lcbel=•C is fast and efficient, which makes it ideal for writing
performance-critical applications.

ldbel=•C is portable, which means that your programs can be compiled
and run on a variety of different computer platforms.

lebel=•C is a good language to learn for beginners.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 7 / 50

Basic Syntax of C Program C Language Introduction

Disadvantages of C Programming

1 Steep learning curve: C can be difficult to learn due to its
complex syntax and low-level system access.

2 Lack of memory management: C lacks automatic memory
management, leading to memory leaks and bugs if not handled
properly.

3 No built-in support for object-oriented programming: C
lacks built-in object-oriented programming support, making it
harder to write object-oriented code.

4 No built-in support for concurrency: C lacks built-in
concurrency support, making multithreaded applications more
challenging.

5 Security vulnerabilities: C programs are prone to security
vulnerabilities like buffer overflows if not written carefully.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 8 / 50

Basic Syntax of C Program C Language Introduction

Hello World! in C

The following code is a simple "Hello, World!" program in C:�
1 #i n c l u d e <s t d i o . h>
2 i n t main () {
3 p r i n t f (" He l l o , World !\ n") ;
4 r e t u r n 0 ;
5 }� �

1 This program first includes the stdio.h header file, which
contains the printf() function.

2 The main() function is the entry point of the program.
3 The printf() function prints the string "Hello, World!" to the

console.
4 The return 0; statement tells the operating system that the

program has terminated successfully.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 9 / 50

Basic Syntax of C Program C Language Introduction

Output your Name

�
1 // Fi leName : namePr int . c
2 // P r i n t s g i v en name
3 #i n c l u d e <s t d i o . h>
4 main ()
5 {
6 cha r name [] = "Your Name"
7 p r i n t f (" h e l l o , %s \n" , name) ;
8 }� �

1 Compilation: gcc -g -Wall namePrint.c -o namePrint.out
gcc → GNU Compiler Collection
gcc -g → generates debug info to be used by GDB debugger
-Wall → Show all warnings

2 Run: ./namePrint.out
3 “.out” – not mandatory

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 10 / 50

Basic Syntax of C Program The compilation process

The compilation process of a C program

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 11 / 50

Basic Syntax of C Program The compilation process

The Stages of Compilation

The compilation process of a C program can be divided into four
stages:

1 Preprocessing: The preprocessor is a program that expands
macros and replaces #include directives with the contents of the
header files.

2 Compilation: The compiler converts the C code into
assembly language.

3 Assembly: The assembler converts the assembly language into
machine code.

4 Linking: The linker combines the machine code from
multiple object files into an executable file.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 12 / 50

Basic Syntax of C Program The compilation process

Executing a code

1 Normal Compilation:
gcc filename.c –o filename or simply gcc filename.c

2 Run/execute the code:
./filename or ./a.out

3 Too see all stages:
gcc -g -Wall -save-temps filename.c –o filename

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 13 / 50

Basic Syntax of C Program The compilation process

Execution Stages

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 14 / 50

Basic Syntax of C Program The compilation process

The Role of the Preprocessor

.c → .i

The preprocessor is a program that is run before the compiler. It is
responsible for the following tasks:

Expanding macros
Replacing #include directives with the contents of the header
files
Performing conditional compilation
Executing directives that control the compilation process

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 15 / 50

Basic Syntax of C Program The compilation process

The Role of the Compiler

.i → .s

The compiler is a program that converts the C code into assembly
language. It is responsible for the following tasks:

Analyzing the C code for syntax errors
Generating assembly language code for each statement in the C
code
Performing optimizations to the assembly language code

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 16 / 50

Basic Syntax of C Program The compilation process

The Role of the Assembler

.s → .o

The assembler is a program that converts the assembly language into
machine code. It is responsible for the following tasks:

Converting each instruction in the assembly language into
machine code
Generating a symbol table for the machine code

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 17 / 50

Basic Syntax of C Program The compilation process

The Role of the Linker

.o → .out

The linker is a program that combines the machine code from
multiple object files into an executable file. It is responsible for the
following tasks:

All the linking of function calls with their definitions
Linking the object files together
Resolving symbol references between the object files
Generating a relocation table for the executable file

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 18 / 50

Basic Syntax of C Program The compilation process

Errors Detection During Compilation

• Errors in a C program can be detected during any of the four
stages of compilation.
• The preprocessor, compiler, assembler, and linker all have their own
set of error messages.

Type of error messages
Syntax errors: Detected by the preprocessor and compiler.
Usually caused by incorrect use of the C language syntax.
Logical errors: Not detected by the preprocessor or compiler.
Usually caused by incorrect logic in the C code.
Runtime errors: Detected when the C program is executed.
Usually caused by incorrect input data or memory corruption.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 19 / 50

Basic Syntax of C Program Commenting in C

Commenting in C

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 20 / 50

Basic Syntax of C Program Commenting in C

Introduction

Comments are a way to add human-readable text to a C program.
They are not executed by the compiler, but they can be helpful for
understanding the code.

Single-Line Comments
Single-line comments start with the // character and continue
to the end of the line.
For example:
// This is a single-line comment
Single-line comments are often used to explain the purpose of a
line of code or to provide a brief explanation of what is
happening.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 21 / 50

Basic Syntax of C Program Commenting in C

Comments

Multi-Line Comments
Multi-line comments start with the /* character and end with
the */ character.
For example:
/* This is a multi-line comment
that can span multiple lines */
Multi-line comments are often used to document the algorithm
used in a function or to describe the input and output of a
program.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 22 / 50

Basic Syntax of C Program Commenting in C

Good Practices for Using Comments

Here are some good practices for using comments in C programs:
Use comments to explain the purpose of the code.
Use comments to document the algorithm used in the code.
Describe the input and output of the code.
Mark out sections of code that are not yet finished.
Add humor or personality to the code, but only if it is
appropriate.
Avoid using comments to explain what the code is doing. The
code should be self-explanatory.
Avoid using comments to replace documentation.
Documentation should be written in a separate document.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 23 / 50

Basic Syntax of C Program Tokens in C

Tokens in C

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 24 / 50

Basic Syntax of C Program Tokens in C

Introduction

A token is the smallest unit of program text that the C
compiler can understand.
Tokens are made up of letters, numbers, and special symbols.

Some examples of tokens in C
Identifiers: Names used to refer to variables, functions, and
other entities.
Keywords: Words with special meaning to the C compiler.
Operators: Symbols used for operations on data.
Punctuators: Symbols used to separate tokens or indicate
program structure.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 25 / 50

Basic Syntax of C Program Tokens in C

Identifiers
Identifiers are names used to refer to variables, functions, and other
entities in a C program.

Rule of Identifiers
Identifiers can be made up of letters { a, b, · · · , z, A,
B,· · · , Z, _ }, numbers { 0,1,· · · ,9}. Max length 31
The first character of an identifier must be a letter.
Examples of valid identifiers in C:
my_variable function_name __constant_name

Examples of invalid identifiers in C:
123variable function-name _variable

Practice
Variable name should be given in such a way that usage of the
variable can be guessed easily from its name.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 26 / 50

Basic Syntax of C Program Tokens in C

Keywords

Keywords are words that have special meaning to the C compiler.
Keywords cannot be used as identifiers.

auto break case char
const continue default do
double else enum extern
float for goto if
int long register return
short signed sizeof static
struct switch typedef union
unsigned void volatile while

Table: Examples of keywords in C:

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 27 / 50

Basic Syntax of C Program Tokens in C

Operators in C

Operator Description Example
+,- Addition, Subtraction a + b, a - b
*, / Multiplication, Division a * b, a / b
% Modulus a % b
++ Increment a++, ++a
-- Decrement a--, --a
== Equal to a == b
!= Not equal to a != b
<, > Less than, Greater than a < b, a > b
<= Less than or equal to a <= b
>= Greater than or equal to a >= b
&& Logical and a && b
|| Logical or a || b
! Logical not !a

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 28 / 50

Basic Syntax of C Program Tokens in C

Bitwise Operators in C

Operator Description Example Result
& Bitwise AND a & b Bits that are set in both a and b
| Bitwise OR a | b Bits that are set in either a or b or both
ˆ Bitwise XOR a ˆ b Bits that are set in one of a or b but not both
˜ Bitwise NOT ˜a Inverts all the bits
« Left shift a « n Shifts the bits of a to the left by n positions
» Right shift a » n Shifts the bits of a to the right by n positions

Table: Bitwise Operators in C

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 29 / 50

Basic Syntax of C Program Tokens in C

Punctuators
are symbols –>used to separate tokens or to indicate the structure.
Punctuator Use Example
< > Header name #include <limits.h>
[] Array delimiter char a[7];
{ } Initializer list, function body, char x[4] = {’H’, ’i’, ’!’, ’\0’};

or compound statement delimiter
() Function parameter list delimiter; int f(x, y);

also used in expression grouping
* Pointer declaration int *x;
, Argument list separator char x[4] = {’H’, ’i’, ’!’, ’\0’};
: Statement label labela: if (x == 0) x += 1;
= Declaration initializer char x[4] = {"Hi!"};
; Statement end x += 1;
... Variable-length argument list int f(int y, ...);
Preprocessor directive #include "limits.h"
’ ’ Character constant char x = ’x’;
" " String literal or header name char x[] = "Hi!";

Table: Punctuators in C
Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 30 / 50

Basic Syntax of C Program Miscellinious

Miscellinious

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 31 / 50

Basic Syntax of C Program Miscellinious

Building block of a Programming Language

1 Memory = space for calculations, rough work, etc.
2 Identifier = names given to memory locations for convenience
3 Instructions = each step in the procedure

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 32 / 50

Variables and Arithmetic Expressions

Variables and Arithmetic Expressions�
1 /∗ f i l e nme : FahToCel . c
2 p r i n t Fah renhe i t −C e l s i u s t a b l e
3 f o r f a h r = 0 , 20 , . . . , 300
4 ∗/
5 #i n c l u d e <s t d i o . h>
6 main ()
7 {
8 i n t f ah r , c e l s i u s ; // v a r i a b l e D e c l a r a t i o n
9 i n t lower , upper , s t e p ;

10 l owe r = 0 ; /∗ l owe r l i m i t o f t empe ra tu r e s c a l e ∗/ // v a r i a b l e a s s i gnment
11 upper = 300 ; /∗ upper l i m i t ∗/
12 s t ep = 20 ; /∗ s t ep s i z e ∗/
13 f a h r = lowe r ;
14 wh i l e (f a h r <= upper) { // wh i l e l oop
15 c e l s i u s = 5 ∗ (fah r −32) / 9 ;
16 p r i n t f ("%d\ t%d\n" , f ah r , c e l s i u s) ;
17 f a h r = f a h r + s t ep ;
18 }
19 }� �

Description
Variable declaration, definition, assignment
E.g. int a;, a = 10;, a=b
Each variable must have a format specifier in printf

Problem
outputs Fahrenheit-Celsius table with float type variable

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 33 / 50

Variables and Arithmetic Expressions

Format Specifiers
Format specifiers define the type of data to be printed on
standard output.
You need to use format specifiers whether you’re printing
formatted output with printf() or accepting input with
scanf().

Some frequently used format specifiers
1 %d – decimal integer; %f – floating point
2 %6d – decimal integer, at least 6 characters wide
3 %6f – floating point, at least 6 characters wide
4 %.2f – floating point, 2 characters after decimal point
5 %6.2f – floating point, at least 6 wide and 2 after decimal point
6 %s – string variable, %c – single character

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 34 / 50

Variables and Arithmetic Expressions

Symbolic Constants�
1 #i n c l u d e <s t d i o . h>
2 #d e f i n e LOWER 0 /∗ l owe r l i m i t o f t a b l e ∗/
3 #d e f i n e UPPER 300 /∗ upper l i m i t ∗/
4 #d e f i n e STEP 20 /∗ s t ep s i z e ∗/
5 /∗ p r i n t Fah renhe i t −C e l s i u s t a b l e ∗/
6 main ()
7 {
8 i n t f a h r ;
9 f o r (f a h r = LOWER; f a h r <= UPPER; f a h r = f a h r + STEP)

10 p r i n t f ("%3d %6.1 f \n" , f ah r , (5 . 0 / 9 . 0) ∗(f ah r −32)) ;
11 }� ��
1 #d e f i n e name rep l a cement l i s t� �

symbolic constants are string of characters:
They are not variables
they do not appear in declarations
In compiled files, they do not exists
Conventionally written in upper case only

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 35 / 50

Variables and Arithmetic Expressions

Input from terminal during execution

printf() : returns total number of Characters Printed, Or
negative value if an output error or an encoding error
scanf() : Reads input of any datatype from (stdin).

Stops reading when it encounters whitespace, newline or EOF
Returns total number of Inputs Scanned successfully, or EOF if
input failure occurs before the first receiving argument was
assigned.

gets(): Reads string from standard input.
Stops stops reading input when it encounters newline or EOF.
Returns total number of Inputs Scanned successfully, or EOF if
input failure occurs before the first receiving argument was
assigned.

Note: gets() does not stop reading input when it encounters
whitespace instead it takes whitespace as a string.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 36 / 50

Variables and Arithmetic Expressions Sample Program

�
1 // Program to compute ave rage o f two f l o a t v a r i a b l e s
2 #in c l u d e <s t d i o . h>
3
4 f l o a t ave rage (f l o a t a , f l o a t b) {
5 r e t u r n ((a+b) /2 . 0) ;
6 }
7
8 i n t main () {
9 f l o a t a , b , avg ;

10
11 s c an f ("%f %f " , &a , &b) ; // t a k i n g i n pu t from t e rm i n a l
12 avg = ave rage (a , b) ; //Compauting ava rage
13 p r i n t f ("%f " , avg) ; // w r i t i n g on t e rm i n a l
14 r e t u r n 0 ;
15 }� �

Sometimes input is large–
Sometime we have many inputs
embedding data directly into the source code– a bad idea and
Not practical
We require to take input data from files.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 37 / 50

Variables and Arithmetic Expressions Sample Program

�
1 // Program to compute ave rage o f two f l o a t v a r i a b l e s
2 #in c l u d e <s t d i o . h>
3
4 f l o a t ave rage (f l o a t a , f l o a t b) {
5 r e t u r n ((a+b) /2 . 0) ;
6 }
7
8 i n t main () {
9 f l o a t a , b , avg ;

10
11 s c an f ("%f %f " , &a , &b) ; // t a k i n g i n pu t from t e rm i n a l
12 avg = ave rage (a , b) ; //Compauting ava rage
13 p r i n t f ("%f " , avg) ; // w r i t i n g on t e rm i n a l
14 r e t u r n 0 ;
15 }� �

Sometimes input is large–
Sometime we have many inputs
embedding data directly into the source code– a bad idea and
Not practical
We require to take input data from files.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 37 / 50

Variables and Arithmetic Expressions Sample Program

TOP Secret to be an Expert in programming

Only Secret: Practice!
Practice code/program writing
Practice to solve daily eligible problems with coding
Practice to take new coding challenges

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 38 / 50

Variables and Arithmetic Expressions Control Flow

Control Flow

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 39 / 50

Variables and Arithmetic Expressions Control Flow

Type of control flow

styles
C provides two styles of flow control:

1 Branching: Branching is deciding what actions to take.
Example: If, if-else, if-else if-else, switch

2 Looping: looping is deciding how many times to take a certain
action.
Example: while loop, for loop, Do-while loop, etc.

Loop controller
1 Break: jump out of a loop.
2 continue: continues with the next iteration

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 40 / 50

Variables and Arithmetic Expressions Control Flow

If

�
1 i f (c o n d i t i o n) {
2 // b l o ck o f code to be execu ted
3 // i f the c o n d i t i o n i s t r u e
4 }� �

Example:�
1 i n t a = 10 ;
2 i n t b = 2 ;
3 i f (a > b) {
4 p r i n t f ("a i s g r e a t e r than b") ;
5 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 41 / 50

Variables and Arithmetic Expressions Control Flow

If-Else�
1 i f (c o n d i t i o n) {
2 // b l o ck o f code to be execu ted
3 // i f the c o n d i t i o n i s True
4 } e l s e {
5 // b l o ck o f code to be execu ted
6 // i f the c o n d i t i o n i s F a l s e
7 }� ��
1 i n t a = 10 ;
2 i n t b = 2 ;
3 i f (a > b) {
4 p r i n t f ("a i s g r e a t e r than b") ;
5 } e l s e {
6 p r i n t f ("a i s l e s s than b") ;
7 }� �

If-Else in a single line:�
1 c o n d i t i o n ? e x p r e s s i o n −t r u e : e x p r e s s i o n −f a l s e� ��
1 i n t a = 10 , b = 2 ;
2 (a > b) ? p r i n t f ("a i s g r e a t e r than b") : p r i n t f ("a i s l e s s than b") ;� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 42 / 50

Variables and Arithmetic Expressions Control Flow

Else-If�
1 i f (t e s t e x p r e s s i o n 1) {
2 // s ta tement (s)
3 }
4 e l s e i f (t e s t e x p r e s s i o n 2) {
5 // s ta tement (s)
6 }
7 e l s e i f (t e s t e x p r e s s i o n 3) {
8 // s ta tement (s)
9 }

10 .
11 .
12 e l s e {
13 // s ta tement (s)
14 }� ��
1 i f (marks > 85) {
2 p r i n t f (" F i r s t C l a s s w i th D i s t i n c t i o n ") ;
3 }
4 e l s e i f (marks > 60) {
5 p r i n t f (" F i r s t C l a s s ") ;
6 }
7 e l s e i f (marks >40) {
8 p r i n t ("Passed ") ;
9 }

10 e l s e {
11 p r i n t (" F a i l e d ") ;
12 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 43 / 50

Variables and Arithmetic Expressions Control Flow

Switch: Psudocode

�
1 sw i t c h (e x p r e s s i o n)
2 {
3 ca se con s t an t1 :
4 // s t a t emen t s
5 break ;
6
7 ca se con s t an t2 :
8 // s t a t emen t s
9 break ;

10 .
11 .
12 .
13 d e f a u l t :
14 // d e f a u l t s t a t emen t s
15 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 44 / 50

Variables and Arithmetic Expressions Control Flow

Switch: Example�
1 char o p e r a t i o n ;
2 doub l e n1 , n2 ;
3 p r i n t f (" Ente r an op e r a t o r (+ , −, ∗ , /) : ") ;
4 s c a n f ("%c" , &op e r a t i o n) ;
5 p r i n t f (" Ente r two operands : ") ;
6 s c a n f ("%l f %l f " ,&n1 , &n2) ;
7
8 sw i t c h (o p e r a t i o n)
9 {

10 case ’+’ :
11 p r i n t f ("%.1 l f + %.1 l f = %.1 l f " , n1 , n2 , n1+n2) ;
12 break ;
13
14 ca se ’− ’ :
15 p r i n t f ("%.1 l f − %.1 l f = %.1 l f " , n1 , n2 , n1−n2) ;
16 break ;
17
18 ca se ’ ∗ ’ :
19 p r i n t f ("%.1 l f ∗ %.1 l f = %.1 l f " , n1 , n2 , n1∗n2) ;
20 break ;
21
22 ca se ’ / ’ :
23 p r i n t f ("%.1 l f / %.1 l f = %.1 l f " , n1 , n2 , n1/n2) ;
24 break ;
25
26 // op e r a t o r doesn ’ t match any ca se con s t an t +, −, ∗ , /
27 d e f a u l t :
28 p r i n t f (" E r r o r ! o p e r a t o r i s not c o r r e c t ") ;
29 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 45 / 50

Variables and Arithmetic Expressions Loops

For and While�
1 f o r (i n i t ; c o n d i t i o n ; i n c r ement) {
2 s ta tement (s) ;
3 }� ��
1 i n t i ;
2
3 /∗ f o r l oop e x e c u t i o n ∗/
4 f o r (i = 1 ; i < 10 ; i = i + 1) {
5 p r i n t f (" v a l u e o f i : %d\n" , i) ;
6 }� ��
1 wh i l e (c o n d i t i o n) {
2 s ta tement (s) ;
3 }� ��
1 i n t i = 1 ;
2
3 /∗ wh i l e l oop e x e c u t i o n ∗/
4 wh i l e (i < 10) {
5 p r i n t f (" v a l u e o f i : %d\n" , i) ;
6 i ++;
7 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 46 / 50

Variables and Arithmetic Expressions Loops

for and while loop

Some frequently used format specifiers
1 The for statement is a loop– a generalization of the while.
2 Three parts— separated by semicolons.
3 The first part– the initialization
4 The second part– Loop controller/ loop terminator
5 The third part– condition re-evaluation

‘For’ or ‘while’: which to use?
whatever you want
‘for’ is more compact. It keeps the loop control statements
together in one place

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 47 / 50

Variables and Arithmetic Expressions For and While loop

Flowchart of for

Flowchart of For loop

Flowchart of For while loop

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 48 / 50

Variables and Arithmetic Expressions For and While loop

Do-While

Flowchart of Do-while loop

Pseudocode:�
1 do {
2 // the body o f the l oop
3 }
4 wh i l e (t e s t E x p r e s s i o n) ;� �

Example:�
1 i n t i ;
2
3 /∗ f o r l oop e x e c u t i o n ∗/
4 i = 1 ;
5 do{
6 p r i n t f (" v a l u e o f i : %d\n" , i) ;
7 i = i + 1 ;
8 } wh i l e (i < 10) ;� �

Question: What to use For or While or Do-While?

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 49 / 50

Variables and Arithmetic Expressions For and While loop

Break and Continue

break statement terminates a loop�
1 f o r (i n t i = 1 ; i <= 40 ; i++) {
2 p r i n t f (" v a l u e o f i : %d\n" , i) ;
3 i f (i == 10) {
4 break ; // t e rm i n a t e s the l oop
5
6 }
7 }� �
continue skips a current iteration of a loop.�

1 f o r (i n t i = 1 ; i <= 10 ; i++{
2 p r i n t f (" v a l u e o f i : %d\n" , i) ;
3 i f (i == 3) {
4 con t i nu e ;
5 }
6 }� �

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures August 13, 2024 50 / 50

	Basic Ubuntu Commands
	Frequently used Commands

	Basic Syntax of C Program
	C Language Introduction
	The compilation process
	Commenting in C
	Tokens in C
	Miscellinious

	Variables and Arithmetic Expressions
	Sample Program
	Control Flow
	Loops
	For and While loop

