
AVL Trees

COL 106

Amit Kumar

Shweta Agrawal

Slide Courtesy : Douglas Wilhelm Harder, MMath, UWaterloo

dwharder@alumni.uwaterloo.ca

Background

So far …

– Binary search trees store linearly ordered
data

– Best case height: Q(ln(n))

– Worst case height: O(n)

Requirement:

– Define and maintain a balance to ensure
Q(ln(n)) height

Prototypical Examples

These two examples demonstrate how we can correct

for imbalances: starting with this tree, add 1:

Prototypical Examples

This is more like a linked list; however, we can fix this…

Prototypical Examples

Promote 2 to the root, demote 3 to be 2’s right child, and

1 remains the left child of 2

Prototypical Examples

The result is a perfect tree

Prototypical Examples

Alternatively, given this tree, insert 2

Prototypical Examples

Again, the product is a linked list; however, we can fix

this, too

Prototypical Examples

Promote 2 to the root, and assign 1 and 3 to be its

children

Prototypical Examples

The result is, again, a perfect tree

These examples may seem trivial, but they
are the basis for the corrections in the next
data structure we will see: AVL trees

AVL Trees

We will focus on the first strategy: AVL trees
– Named after Adelson-Velskii and Landis

Notion of balance in AVL trees?

Balance is defined by comparing the height of
the two sub-trees

Recall:
– An empty tree has height –1

– A tree with a single node has height 0

AVL Trees

A binary search tree is said to be AVL

balanced if:

– The difference in the heights between the left

and right sub-trees is at most 1, and

– Both sub-trees are themselves AVL trees

AVL Trees

AVL trees with 1, 2, 3, and 4 nodes:

AVL Trees

Here is a larger AVL tree (42 nodes):

AVL Trees

The root node is AVL-balanced:

– Both sub-trees are of height 4:

AVL Trees

All other nodes are AVL balanced

– The sub-trees differ in height by at most one

Height of an AVL Tree

By the definition of complete trees, any

complete binary search tree is an AVL tree

Thus an upper bound on the number of

nodes in an AVL tree of height h

a perfect binary tree with 2h + 1 – 1 nodes

– What is a lower bound?

Height of an AVL Tree

Let F(h) be the fewest number of nodes in a tree of

height h

From a previous slide:

F(0) = 1

F(1) = 2

F(2) = 4

Can we find F(h)?

Height of an AVL Tree

The worst-case AVL tree of height h would
have:

– A worst-case AVL tree of height h – 1 on one
side,

– A worst-case AVL tree of height h – 2 on the
other, and

– The root node

We get: F(h) = F(h – 1) + 1 + F(h – 2)

Height of an AVL Tree

This is a recurrence relation:

The solution?

















11)2F()1F(

12

01

)F(

hhh

h

h

h

Height of an AVL Tree

• Fact: The height of an AVL tree storing n keys is O(log n).

• Proof: Let us bound n(h): the minimum number of internal nodes of an AVL
tree of height h.

• We easily see that n(1) = 1 and n(2) = 2

• For n > 2, an AVL tree of height h contains the root node, one AVL subtree of
height h-1 and another of height h-2.

• That is, n(h) = 1 + n(h-1) + n(h-2)

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
• n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

• n(h) > 2in(h-2i)

• Solving the base case we get: n(h) > 2 h/2-1

• Taking logarithms: h < 2log n(h) +2

• Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

Maintaining Balance

To maintain AVL balance, observe that:

– Inserting a node can increase the height of a

tree by at most 1

– Removing a node can decrease the height of

a tree by at most 1

Maintaining Balance

Consider this AVL tree

Maintaining Balance

Consider inserting 15 into this tree

– In this case, the heights of none of the trees change

Maintaining Balance

The tree remains balanced

Maintaining Balance

Consider inserting 42 into this tree

– In this case, the heights of none of the trees

change

Maintaining Balance

If a tree is AVL balanced, for an insertion to cause an

imbalance:

– The heights of the sub-trees must differ by 1

– The insertion must increase the height of the deeper

sub-tree by 1

Maintaining Balance

Suppose we insert 23 into our initial tree

Maintaining Balance

The heights of each of the sub-trees from

here to the root are increased by one

Maintaining Balance

However, only two of the nodes are

unbalanced: 17 and 36

Maintaining Balance

However, only two of the nodes are unbalanced: 17 and

36

– We only have to fix the imbalance at the lowest node

Maintaining Balance

We can promote 23 to where 17 is, and

make 17 the left child of 23

Maintaining Balance

Thus, that node is no longer unbalanced

– Incidentally, neither is the root now balanced

again, too

Maintaining Balance

Consider adding 6:

Maintaining Balance

The height of each of the trees in the path

back to the root are increased by one

Maintaining Balance

The height of each of the trees in the path

back to the root are increased by one

– However, only the root node is now

unbalanced

Maintaining Balance

We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left

subtree of 36

17 27

Case 1 setup

Consider the following setup

– Each blue triangle represents a tree of height h

Maintaining Balance: Case 1

Insert a into this tree: it falls into the left subtree BL of b

– Assume BL remains balanced

– Thus, the tree rooted at b is also balanced

Left subtree of left child

Maintaining Balance: Case 1

The tree rooted at node f is now unbalanced

– We will correct the imbalance at this node

Maintaining Balance: Case 1

We will modify three pointers:

Maintaining Balance: Case 1

Specifically, we will rotate these two nodes around the

root:

– Recall the first prototypical example

– Promote node b to the root and demote node f to be

the right child of b

Maintaining Balance: Case 1

Make f the right child of b

Maintaining Balance: Case 1

Assign former parent of node f to point to node b

Make BR left child of node f

Maintaining Balance: Case 1

The nodes b and f are now balanced and all remaining

nodes of the subtrees are in their correct positions

Maintaining Balance: Case 1

Additionally, height of the tree rooted at b equals the

original height of the tree rooted at f

– Thus, this insertion will no longer affect the balance of

any ancestors all the way back to the root

More Examples

Maintaining Balance: Case 2

Alternatively, consider the insertion of c where b < c < f

into our original tree

Maintaining Balance: Case 2

Assume that the insertion of c increases the height of BR

– Once again, f becomes unbalanced

Right subtree of left child

Maintaining Balance: Case 2

Here are examples of when the

insertion of 14 may cause this

situation when h = –1, 0, and 1

Maintaining Balance: Case 2

Unfortunately, the previous correction does not fix the

imbalance at the root of this sub-tree: the new root, b,

remains unbalanced

Maintaining Balance: Case 2

In our three sample cases

with h = –1, 0, and 1,

doing the same thing

as before results in

a tree that is still

unbalanced…

– The imbalance is just

shifted to the other

side

Maintaining Balance: Case 2

Lets start over …

Maintaining Balance: Case 2

Re-label the tree by dividing the left subtree of f into a

tree rooted at d with two subtrees of height h – 1

Maintaining Balance: Case 2

Now an insertion causes an imbalance at f

– The addition of either c or e will cause this

Maintaining Balance: Case 2

We will reassign the following pointers

Maintaining Balance: Case 2
Specifically, we will order these three nodes as a perfect

tree

– Recall the second prototypical example

Maintaining Balance: Case 2

To achieve this, b and f will be assigned as

children of the new root d

Maintaining Balance: Case 2

We also have to connect the two subtrees and original parent of f

Maintaining Balance: Case 2

Now the tree rooted at d is balanced

Maintaining Balance: Case 2

Again, the height of the root did not change

Maintaining Balance: Case 2

In our three sample cases

with h = –1, 0, and 1, the

node is now balanced

and the same height

as the tree before the

insertion

14

Maintaining balance: Summary

There are two symmetric cases to those we have examined:

– Insertions into the right-right sub-tree

-- Insertions into either the right-left sub-tree

More examples : Insertion

Consider this AVL tree

Insertion

Insert 73

Insertion

The node 81 is unbalanced

– A left-left imbalance

Insertion

The node 81 is unbalanced

– A left-left imbalance

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that node

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that node

Insertion

The tree is AVL balanced

Insertion

Insert 77

Insertion

The node 87 is unbalanced

– A left-right imbalance

Insertion

The node 87 is unbalanced

– A left-right imbalance

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

– 81 is that value

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

– 81 is that value

Insertion

The tree is balanced

Insertion

Insert 76

Insertion

The node 78 is unbalanced

– A left-left imbalance

Insertion

The node 78 is unbalanced

– Promote 77

Insertion

Again, balanced

Insertion

Insert 80

Insertion

The node 69 is unbalanced

– A right-left imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 69 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the imbalanced

node

– 75 is that value

Insertion

Again, balanced

Insertion

Insert 74

Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that value

Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the imbalanced

node

Insertion

Again, balanced

Insertion

Insert 67

Insertion

Again, balanced

Insertion

Insert 70

Insertion

The root node is now imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 75 is that value

Insertion

The root node is imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 63 is that node

Insertion

The result is balanced

Let the node that needs rebalancing be j.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of j.
2. Insertion into right subtree of right child of j.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of j.
4. Insertion into left subtree of right child of j.

The rebalancing is performed through four
separate rotation algorithms.

Summary : Insertions

Outside Case

Left subtree of left child

Inside Case

Right subtree of left child

Single “right” Rotation “left-right” Double Rotation

j

k

X Y

Z

Inside Case Recap

h

hh

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

h

h+1h

h or h-1

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .

j

k

X V

Z
W

i

Double rotation : first rotation

left rotation complete

j

k

X V

Z
W

i

Double rotation : second rotation

Now do a right rotation

jk

X V ZW

i

Double rotation : second rotation

right rotation complete

Balance has been
restored

hh h or h-1

12/26/03 AVL Trees - Lecture 8 111

Implementation

balance (1,0,-1)

key

rightleft

No need to keep the height; just the difference in height, i.e. the balance
factor; this has to be modified on the path of insertion even if you don’t
perform rotations

Once you have performed a rotation (single or double) you won’t need to go
back up the tree

Insertion in AVL Trees

• Insert at the leaf (as for all BST)

– only nodes on the path from insertion point to
root node have possibly changed in height

– So after the Insert, go back up to the root node by
node, updating heights

– If a new balance factor (the difference hleft-hright) is
2 or –2, adjust tree by rotation around the node

Correctness: Rotations preserve inorder traversal ordering

Erase

Removing a node from an AVL tree may

cause more than one AVL imbalance

– Like insert, erase must check after it has been

successfully called on a child to see if it

caused an imbalance

– Unfortunately, it may cause multiple

imbalances that must be corrected

• Insertions will only cause one imbalance that must

be fixed

Erase

Consider the following AVL tree

Erase

Suppose we erase the front node: 1

Erase

While its previous parent, 2, is not unbalanced, its

grandparent 3 is

– The imbalance is in the right-right subtree

Erase

We can correct this with a simple balance

Erase

The node of that subtree, 5, is now balanced

Erase

Recursing to the root, however, 8 is also unbalanced

– This is a right-left imbalance

Erase

Promoting 11 to the root corrects the imbalance

Erase

At this point, the node 11 is balanced

Erase

Still, the root node is unbalanced

– This is a right-right imbalance

Erase

Again, a simple balance fixes the imbalance

Erase

The resulting tree is now AVL balanced

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).

Pros and Cons of AVL Trees

