
Hash Table
Course: Design and Analysis of Algorithms

Dr. Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

November 4, 2024

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 1 / 21

1 Direct-address Table

2 Hash Table

3 Chaining

4 Open Addressing
Perfect Hashing

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 2 / 21

Computer science starts when we require to compute over data.
Data can be seen as binary strings (of �xed or variable size).
Often data is not processed immediately => need to be stored.
Whenever require, �rst search to retrieve, If necessary, we need
to add/append or delete/remove new/old data items.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 3 / 21

Data Structures

For e�cient handling we need to structure data

Example Data Structures: Arrays, linked lists, BST,

Main operations are - add, search, and delete

Array

11 12 13 14 15 16 17

Singly Linked List

11 12 13 14 15 16 17
Head

Binary Search Tree
14

12 16

11 13 15 17

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 4 / 21

Data Structures: Time complexities

Data Structure Add (Insert) Search Delete (after search)
Array O(n) O(n) O(1)

Linked List O(1) O(n) O(1)
Binary Search Tree O(log n) O(log n) O(log n)

Table: Time Complexity: in General

Question: Can we both add and search in O(1) time?
Solution: Hash Table data structure

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 5 / 21

Dictionary and Hash Table

Dictionary

A dictionary is a list/set of key-value pairs.

For example: Key can be a word and value can be meaning
string

We add key-value pair, search with key and delete value having
key

Hash Table

is a data structure that store values (and keys).

Mainly is an array (or combination of array and linked list)

A hash function computes an index from the key, and the
value is stored at that index.

Handles operations like Insert, Search, and Delete.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 6 / 21

Direct-address Table

Direct-address Table

Direct hash table

Suppose, keys are from {0, 1, 2, · · · ,m − 1} (key universe)

Then we can take an array T of length m.

store item x with key x .key at T [x .key] = x (x = {key , value})

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 7 / 21

Hash Table

Hash Table

Let K= set of all keys in the table, U = set of all possible keys

What if key-universe is too big?
Hashing

hash map h : {0, 1}∗ → {0, 1}k , (Key-universe to table index)

Maps arbitrary size keys to �xed-size

For example k = log |K |, h(x .key) maps to some index of T

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 8 / 21

Hash Table

Collision

Since domain is too big, collision is inevitable.

How to handle collision?

1. Chaining

Items with keys that maps to same index, are kept in a linked
list (chain)

Instead of keeping items in the array T , head of the linked lists
are kept in T

2. Open Addressing

Items are kept the array T .

If collision occurs, �nd for the next possible empty space in T

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 9 / 21

Chaining

Chaining

In chaining, each index in the hash table points to a linked list of
key-value pairs that have the same hash value.

When a collision occurs, the new entry is added to the end of
the list.
Searching, inserting, and deleting involve traversing the list at
the speci�c index.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 10 / 21

Chaining

Pseudocode for Insertion with Chaining

1 procedure Insert(key , value)

2 index = HashFunction(key)

3 if table[index] is empty then

4 table[index] = new linked_list

5 end if

6 table[index]. append ((key , value))

7 end procedure

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 11 / 21

Chaining

Chaining

Complexity

If hash function distributes keys well (uniformly)

Collision is minimal

Every keys will be mapped to a single index, on average

average case: Searching, inserting, and deleting can be done in
O(1) time

worst case: All maps to same index, is same as a single linked list

Problems

Cache Performance not Good: Elements are not stored
contiguously,

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 12 / 21

Chaining

Analysis of Chaining

hash table T → with m slots → stores n elements.
Load factor α = n/m

average-case

depends on how well h distributes K among the m slots.

Theorem

successful/ unsuccessful search → average-case time Θ(1+ α),
under the assumption of simple uniform hashing.

Simple Uniform Hashing

Each key is equally likely to be mapped to any of the available
slots.

The distribution of keys into the slots is completely random and
independent of the keys themselves.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 13 / 21

Chaining

Universal Hashing

is a method in which a hash function is randomly chosen from a
family of hash functions, providing a probabilistic guarantee against
worst-case collision.

Example of a Universal Hash Family

Hash Function Family: Consider the hash function
ha,b(x) = ((a · x + b) mod p) mod m

Parameters:

p: A large prime number > |U|
m: Size of the hash table.

a, b: Random integers chosen such that 1 ≤ a < p and

0 ≤ b < p.

This family is universal, providing a uniform distribution of
hashed values across the table.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 14 / 21

Open Addressing

Open Addressing

All items are stored in the hash table itself (contiguous memory).

When a collision occurs, the algorithm searches for the next
available slot in the table.

x2 x1 x4 x3

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

h(x1.key) = 5 ⇒ T [5] = x1
h(x2.key) = 3 ⇒ T [3] == x2
h(x3.key) = 7 ⇒ T [7] = x3
h(x4.key) = 5 ⇒ Collision ⇒ T [6] == x4

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 15 / 21

Open Addressing

Pseudocode for Open Addressing I

1 function insert(key)

2 i = 0

3 repeat

4 j = (hash(key) + probe(i)) mod m

5 if table[j] is empty or marked deleted then

6 table[j] = key

7 return

8 i = i + 1

9 until i == m

10 error "Hash table is full"

1 function search(key)

2 i = 0

3 repeat

4 j = (hash(key) + probe(i)) mod m

5 if table[j] == key then

6 return j

7 else if table[j] is empty then

8 return "Not found"

9 i = i + 1

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 16 / 21

Open Addressing

Pseudocode for Open Addressing II

10 until i == m

11 return "Not found"

1 function delete(key)

2 location = search(key)

3 if location is not "Not found" then

4 table[location] = marked deleted

Complexity: Average Case: takes O(1) time
Worst Case: O(m), where m is the size of the hash table.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 17 / 21

Open Addressing

Probing

How to determine next slot, if there is collision?

Linear Probing: Search the next consecutive slot.

h(k , i) = (h(k) + i) mod m

Fast but can lead to primary clustering.

Quadratic Probing: Use a quadratic function.

h(k , i) = (h(k) + c1 · i + c2 · i2) mod m

Reduces primary clustering but introduces secondary clustering.

Double Hashing: Use a second hash function.

h(k , i) = (h1(k) + i · h2(k)) mod m

Minimizes clustering but is more complex.

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 18 / 21

Open Addressing

Expected Performance

Successful Search:
The expected number of probes is approximately: 1

α
ln
(

1
1−α

)
Example: If α = 0.5 (50% load factor), then
1
0.5

ln
(

1
1−0.5

)
= 2 ln(2) ≈ 1.39

This is close to O(1)
Unsuccessful Search:

The expected number of probes is approximately: 1
1−α

Example: If α = 0.75 (75% load factor), then 1
1−0.75

= 4
This implies that, on average, 4 probes are needed

Insertion:
The expected time is similar unsuccessful search: O

(
1

1−α

)
Example: If α = 0.85 (85% load factor), then
O
(

1
1−0.85

)
= O(6.67)

Indicating performance degradation as α increases.
Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 19 / 21

Open Addressing Perfect Hashing

Perfect Hashing

Perfect Hashing is a technique where no collisions occur. It is
usually implemented with two-level hashing:

The �rst hash function distributes keys into buckets.

The second level uses a perfect hash function to resolve
collisions within each bucket.

Used in static sets

Laltu Sardar (IAI, TCG Crest) Design and Analysis of Algorithms November 4, 2024 20 / 21

Dr. Laltu Sardar

laltu.sardar@tcgcrest.org

https://laltu-sardar.github.io.

https://laltu-sardar.github.io

	Direct-address Table
	Hash Table
	Chaining
	Open Addressing
	Perfect Hashing

