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11.2 Power Method

We now describe the power method for computing the dominant eigenpair. Its exten-
sion to the inverse power method is practical for finding any eigenvalue provided that a
good initial approximation is known. Some schemes for finding eigenvalues use other
methods that converge fast, but have limited precision. The inverse power method is
then invoked to refine the numerical values and gain full precision. To discuss the
situation, we will need the following definitions.

Definition 11.10. If λ1 is an eigenvalue of A that is larger in absolute value than any
other eigenvalue, it is called the dominant eigenvalue. An eigenvector V 1 correspond-
ing to λ1 is called a dominant eigenvector. �
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Definition 11.11. An eigenvector V is said to be normalized if the coordinate of
largest magnitude is equal to unity (i.e., the largest coordinate in the vector V is the
number 1). �

It is easy to normalize an eigenvector
[
v1 v2 · · · vn

]′ by forming a new vector

V = (1/c)
[
v1 v2 · · · vn

]′, where c = v j and |v j | = max1≤i≤n{|vi |}.
Suppose that the matrix A has a dominant eigenvalue λ and that there is a unique

normalized eigenvector V that corresponds to λ. This eigenpair λ, V can be found by
the following iterative procedure called the power method. Start with the vector

(1) X0 =
[
1 1 · · · 1

]′
.

Generate the sequence {Xk} recursively, using

(2)
Y k = AXk,

Xk+1 = 1

ck+1
Y k,

where ck+1 is the coordinate of Y k of largest magnitude (in the case of a tie, choose
the coordinate that comes first). The sequences {Xk} and {ck} will converge to V and
λ, respectively:

(3) lim
k→∞ Xk = V and lim

k→∞ ck = λ.

Remark. If X0 is an eigenvector and X0 �= V , then some other starting vector must be
chosen.

Example 11.5. Use the power method to find the dominant eigenvalue and eigenvector
for the matrix

A =
 0 11 −5
−2 17 −7
−4 26 −10

 .

Start with X0 =
[
1 1 1

]′ and use the formulas in (2) to generate the sequence of
vectors {Xk} and constants {ck}. The first iteration produces 0 11 −5

−2 17 −7

−4 26 −10


1

1

1

 =
 6

8

12

 = 12

 1
2
2
3
1

 = c1 X1.

The second iteration produces 0 11 −5

−2 17 −7

−4 26 −10




1
2
2
3

1

 =


7
3
10
3
16
3

 = 16

3


7

16
5
8

1

 = c2 X2.
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Table 11.1 Power Method Used in Example 11.5 to Find the Normalized Dominant
Eigenvector V = [ 2

5
3
5 1

]′
and Corresponding Eigenvalue λ = 4

AXk = Yk = ck+1 Xk+1

AX0 = [6.000000 8.000000 12.00000]′ = 12.00000[0.500000 0.666667 1]′ = c1 X1
AX1 = [2.333333 3.333333 5.333333]′ = 5.333333[0.437500 0.625000 1]′ = c2 X2
AX2 = [1.875000 2.750000 4.500000]′ = 4.500000[0.416667 0.611111 1]′ = c3 X3
AX3 = [1.722222 2.555556 4.222222]′ = 4.222222[0.407895 0.605263 1]′ = c4 X4
AX4 = [1.657895 2.473684 4.105263]′ = 4.105263[0.403846 0.602564 1]′ = c5 X5
AX5 = [1.628205 2.435897 4.051282]′ = 4.051282[0.401899 0.601266 1]′ = c6 X6
AX6 = [1.613924 2.417722 4.025316]′ = 4.025316[0.400943 0.600629 1]′ = c7 X7
AX7 = [1.606918 2.408805 4.012579]′ = 4.012579[0.400470 0.600313 1]′ = c8 X8
AX8 = [1.603448 2.404389 4.006270]′ = 4.006270[0.400235 0.600156 1]′ = c9 X9
AX9 = [1.601721 2.402191 4.003130]′ = 4.003130[0.400117 0.600078 1]′ = c10 X10

AX10 = [1.600860 2.401095 4.001564]′ = 4.001564[0.400059 0.600039 1]′ = c11 X11

Iteration generates the sequence {Xk} (where Xk is a normalized vector):

12


1
2
2
3

1

 ,
16

3


7
16
5
8

1

 ,
9

2


5

12
11
18

1

 ,
38

9


31
76
23
38

1

 ,
78

19


21
52
47
78

1

 ,
158

39


127
316
95

158

1

 , · · ·

The sequence of vectors converges to V = [
2
3

3
5 1

]′
, and the sequence of constants

converges to λ = 4 (see Table 11.1). It can be proved that the rate of convergence is
linear. �

Theorem 11.18 (Power Method). Assume that the n × n matrix A has n distinct
eigenvalues λ1, λ2, . . . , λn and that they are ordered in decreasing magnitude; that is,

(4) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
If X0 is chosen appropriately, then the sequences

{
Xk =

[
x (k)

1 x (k)
2 . . . x (k)

n

]′} and
{ck} generated recursively by

(5) Y k = AXk

and

(6) Xk+1 = 1

ck+1
Y k,

where

(7) ck+1 = x (k)
j and x (k)

j = max
1≤i≤n

{|x (k)
i |},
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will converge to the dominant eigenvector V 1 and eigenvalue λ1, respectively. That is,

(8) lim
k→∞ Xk = V 1 and lim

k→∞ ck = λ1.

Proof. Since A has n eigenvalues, there are n corresponding eigenvectors V j , for
j = 1, 2, . . . , n, that are linearly independent, normalized, and form a basis for n-
dimensional space. Hence the starting vector X0 can be expressed as the linear combi-
nation

(9) X0 = b1V 1 + b2V 2 + · · · + bn V n.

Assume that X0 =
[
x1 x2 . . . xn

]′ was chosen in such a manner that b1 �= 0. Also,
assume that the coordinates of X0 are scaled so that max1≤ j≤n{|x j |} = 1. Because
{V j }nj=1 are eigenvectors of A, the multiplication AX0, followed by normalization,
produces

Y 0 = AX0 = A(b1V 1 + b2V 2 + · · · + bn V n)

= b1 AV 1 + b2 AV 2 + · · · + bn AV n

= b1λ1V 1 + b2λ2V 2 + · · · + bnλn V n

= λ1

(
b1V 1 + b2

(
λ2

λ1

)
V 2 + · · · + bn

(
λn

λ1

)
V n

)(10)

and

X1 = λ1

c1

(
b1V 1 + b2

(
λ2

λ1

)
V 2 + · · · + bn

(
λn

λ1

)
V n

)
.

After k iterations we arrive at

Y k−1 = AXk−1

= A
λk−1

1

c1c2 · · · ck−1

(
b1V 1 + b2

(
λ2

λ1

)k−1

V 2 + · · · + bn

(
λn

λ1

)k−1

V n

)

= λk−1
1

c1c2 · · · ck−1

(
b1 AV 1 + b2

(
λ2

λ1

)k−1

AV 2 + · · · + bn

(
λn

λ1

)k−1

AV n

)

= λk−1
1

c1c2 · · · ck−1

(
b1λ1V 1 + b2

(
λ2

λ1

)k−1

λ2V 2 + · · · + bn

(
λn

λ1

)k−1

λn V n

)

= λk
1

c1c2 · · · ck−1

(
b1V 1 + b2

(
λ2

λ1

)k

V 2 + · · · + bn

(
λn

λ1

)k

V n

)

(11)

and

Xk = λk
1

c1c2 · · · ck

(
b1V 1 + b2

(
λ2

λ1

)k−1

V 2 + · · · + bn

(
λn

λ1

)k−1

V n

)
.
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Since we assumed that |λ j |/|λ1| < 1 for each j = 2, 3, . . . , n, we have

(12) lim
k→∞ b j

(
λ j

λ1

)k

V j = 0 for each j = 2, 3, . . . , n.

Hence it follows that

(13) lim
k→∞ Xk = lim

k→∞
b1λ

k
1

c1c2 · · · ck
V 1.

We have required that both Xk and V 1 be normalized and their largest component be 1.
Hence the limiting vector on the left side of (13) will be normalized, with its largest
component being 1. Consequently, the limit of the scalar multiple of V 1 on the right
side of (13) exists and its value must be 1; that is,

(14) lim
k→∞

b1λ
k
1

c1c2 · · · ck
= 1.

Therefore, the sequence of vectors {Xk} converges to the dominant eigenvector:

(15) lim
k→∞ Xk = V 1.

Replacing k with k − 1 in the terms of the sequence in (14) yields

lim
k→∞

b1λ
k−1
1

c1c2 · · · ck−1
= 1,

and dividing both sides of this result into (14) yields

lim
k→∞

λ1

ck
= lim

k→∞
b1λ

k
1/(c1c2 · · · ck)

b1λ
k−1
1 /(c1c2 · · · ck−1)

= 1

1
= 1.

Therefore, the sequence of constants {ck} converges to the dominant eigenvalue:

(16) lim
k→∞ ck = λ1,

and the proof of the theorem is complete. •

Speed of Convergence

In the light of equation (12) we see that the coefficient of V j in Xk goes to zero in
proportion to (λ j/λ1)

k and that the speed of convergence of {Xk} to V 1 is governed
by the terms (λ2/λ1)

k . Consequently, the rate of convergence is linear. Similarly, the
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Table 11.2 Comparison of the Rate of Convergence of the Power Method and Acceleration of
the Power Method Using Aitken’s ���2 Technique

ckYk ĉk X̂k

c1 X1 = 12.000000[0.5000000 0.6666667 1]′; 4.3809524[0.4062500 0.6041667 1]′ = ĉ1 X̂1
c2 X2 = 5.3333333[0.4375000 0.6250000 1]′; 4.0833333[0.4015152 0.6010101 1]′ = ĉ2 X̂2
c3 X3 = 4.5000000[0.4166667 0.6111111 1]′; 4.0202020[0.4003759 0.6002506 1]′ = ĉ3 X̂3
c4 X4 = 4.2222222[0.4078947 0.6052632 1]′; 4.0050125[0.4000938 0.6000625 1]′ = ĉ4 X̂4
c5 X5 = 4.1052632[0.4038462 0.6025641 1]′; 4.0012508[0.4000234 0.6000156 1]′ = ĉ5 X̂5
c6 X6 = 4.0512821[0.4018987 0.6012658 1]′; 4.0003125[0.4000059 0.6000039 1]′ = ĉ6 X̂6
c7 X7 = 4.0253165[0.4009434 0.6006289 1]′; 4.0000781[0.4000015 0.6000010 1]′ = ĉ7 X̂7
c8 X8 = 4.0125786[0.4004702 0.6003135 1]′; 4.0000195[0.4000004 0.6000002 1]′ = ĉ8 X̂8
c9 X9 = 4.0062696[0.4002347 0.6001565 1]′; 4.0000049[0.4000001 0.6000001 1]′ = ĉ9 X̂9
c10 X10 = 4.0031299[0.4001173 0.6000782 1]′; 4.0000012[0.4000000 0.6000000 1]′ = ĉ10 X̂10

convergence of the sequence of constants {ck} to λ1 is linear. The Aitken ���2 method
can be used for any linearly convergent sequence {pk} to form a new sequence,{

p̂k = (pk+1 − pk)
2

pk+2 − 2pk+1 + pk

}
,

that converges faster. In Example 11.4 this Aitken ���2 method can be applied to speed
up convergence of the sequence of constants {ck}, as well as the first two components of
the sequence of vectors {Xk}. A comparison of the results obtained with this technique
and the original sequences is shown in Table 11.2.

Shifted-Inverse Power Method
We will now discuss the shifted inverse power method. It requires a good starting
approximation for an eigenvalue, and then iteration is used to obtain a precise solution.
Other procedures such as the QM and Givens’ method are used first to obtain the
starting approximations. Cases involving complex eigenvalues, multiple eigenvalues,
or the presence of two eigenvalues with the same magnitude or approximately the same
magnitude will cause computational difficulties and require more advanced methods.
Our illustrations will focus on the case where the eigenvalues are distinct. The shifted
inverse power method is based on the following three results (the proofs are left as
exercises).

Theorem 11.19 (Shifting Eigenvalues). Suppose that λ, V is an eigenpair of A. If
α is any constant, then λ− α, V is an eigenpair of the matrix A− α I .

Theorem 11.20 (Inverse Eigenvalues). Suppose that λ, V is an eigenpair of A. If
λ �= 0, then 1/λ, V is an eigenpair of the matrix A−1.
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αλ1 λj − 1 λj
λj + 1 λn

x

Figure 11.2 The location of α for the shifted-inverse
power method.

Theorem 11.21. Suppose that λ, V is an eigenpair of A. If α �= λ, then 1/(λ−α), V
is an eigenpair of the matrix (A− α I)−1.

Theorem 11.22 (Shifted-Inverse Power Method). Assume that the n × n matrix
A has distinct eigenvalues λ1, λ2, . . . , λn and consider the eigenvalue λ j . Then a
constant α can be chosen so that µ1 = 1/(λ j − α) is the dominant eigenvalue of
(A − α I)−1. Furthermore, if X0 is chosen appropriately, then the sequences

{
Xk =[

x (k)
1 x (k)

2 . . . x (k)
n

]′} and {ck} are generated recursively by

(17) Y k = (A− α I)−1 Xk

and

(18) Xk+1 = 1

ck+1
Y k,

where

(19) ck+1 = x (k)
j and x (k)

j = max
1≤ j≤n

{|x (k)
i |}

will converge to the dominant eigenpair µ1, V j of the matrix (A−α I)−1. Finally, the
corresponding eigenvalue for the matrix A is given by the calculation

(20) λ j = 1

µ1
+ α.

Remark. For practical implementations of Theorem 11.22, a linear system solver is
used to compute Y k in each step by solving the linear system (A− α I)Y k = Xk .

Proof. Without loss of generality, we may assume that λ1 < λ2 < · · · < λn . Se-
lect a number α (α �= λ j ) that is closer to λ j than any of the other eigenvalues (see
Figure 11.2), that is,

(21) |λ j − α| < |λi − α| for each i = 1, 2, . . ., j − 1, j + 1, . . . , n.

According to Theorem 11.21, 1/(λ j − α), V is an eigenpair of the matrix
(A− α I)−1. Relation (21) implies that 1/|λi − α| < 1/|λ j − α| for each i �= j
so that µ1 = 1/(λ j − α) is the dominant eigenvalue of the matrix (A − α I)−1. The
shifted-inverse power method uses a modification of the power method to determine
the eigenpair µ1, V j . Then the calculation λ j = 1/µ1 + α produces the desired
eigenvalue of the matrix A. •



606 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Table 11.3 Shifted-Inverse Power Method for the Matrix (A− 4.2I)−1 in
Example 11.6: Convergence to the Eigenvector V = [ 2

5
3
5 1

]′
and µ1 = −5

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = −23.18181818 [0.4117647059 0.6078431373 1]′ = c1 X1
(A− α I)−1 X1 = −5.356506239 [0.4009983361 0.6006655574 1]′ = c2 X2
(A− α I)−1 X2 = −5.030252609 [0.4000902120 0.6000601413 1]′ = c3 X3
(A− α I)−1 X3 = −5.002733697 [0.4000081966 0.6000054644 1]′ = c4 X4
(A− α I)−1 X4 = −5.000248382 [0.4000007451 0.6000004967 1]′ = c5 X5
(A− α I)−1 X5 = −5.000022579 [0.4000000677 0.6000000452 1]′ = c6 X6
(A− α I)−1 X6 = −5.000002053 [0.4000000062 0.6000000041 1]′ = c7 X7
(A− α I)−1 X7 = −5.000000187 [0.4000000006 0.6000000004 1]′ = c8 X8
(A− α I)−1 X8 = −5.000000017 [0.4000000001 0.6000000000 1]′ = c9 X9

Example 11.6. Employ the shifted-inverse power method to find the eigenpairs of the
matrix

A =
 0 11 −5
−2 17 −7
−4 26 −10

 .

Use the fact that the eigenvalues of A are λ1 = 4, λ2 = 2, and λ3 = 1, and select an
appropriate α and starting vector for each case.

Case (i): For the eigenvalue λ1 = 4, we select α = 4.2 and the starting vector
X0 =

[
1 1 1

]′. First, form the matrix A− 4.2I , compute the solution to−4.2 11 −5
−2 12.8 −7
−4 26 −14.2

Y 0 = X0 =
1

1
1

 ,

and get the vector Y 0 =
[−9.545454545 −14.09090909 −23.18181818

]′. Then com-

pute c1 = −23.18181818 and X1 =
[
0.4117647059 0.6078431373 1

]′. Iteration gener-
ates the values given in Table 11.3. The sequence {ck} converges to µ1 = −5, which is the
dominant eigenvalue of (A− 4.2I)−1, and {Xk} converges to V 1 =

[
2
5

3
5 1

]′
. The eigen-

value λ1 of A is given by the computation λ1 = 1/µ1+α = 1/(−5)+4.2 = −0.2+4.2 =
4.

Case (ii): For the eigenvalue λ2 = 2, we select α = 2.1 and the starting vector
X0 =

[
1 1 1

]′. Form the matrix A− 2.1I , compute the solution to−2.1 11 −5
−2 14.9 −7
−4 26 −12.1

Y 0 = X0 =
1

1
1

 ,

and obtain the vector Y 0 =
[
11.05263158 21.57894737 42.63157895

]′. Then c1 =
42.63157895 and vector X1 =

[
0.2592592593 0.5061728395 1

]′. Iteration produces the
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Table 11.4 Shifted-Inverse Power Method for the Matrix (A− 2.1I)−1 in
Example 11.6: Convergence to the Dominant Eigenvector V = [ 1

4
1
2 1

]
and

µ1 = −10

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = 42.63157895 [0.2592592593 0.5061728395 1]′ = c1 X1
(A− α I)−1 X1 = −9.350227420 [0.2494788047 0.4996525365 1]′ = c2 X2
(A− α I)−1 X2 = −10.03657511 [0.2500273314 0.5000182209 1]′ = c3 X3
(A− α I)−1 X3 = −9.998082009 [0.2499985612 0.4999990408 1]′ = c4 X4
(A− α I)−1 X4 = −10.00010097 [0.2500000757 0.5000000505 1]′ = c5 X5
(A− α I)−1 X5 = −9.999994686 [0.2499999960 0.4999999973 1]′ = c6 X6
(A− α I)−1 X6 = −10.00000028 [0.2500000002 0.5000000001 1]′ = c7 X7

Table 11.5 Shifted-Inverse Power Method for the Matrix (A− 0.875I)−1 in
Example 11.6: Convergence to the Dominant Eigenvector V = [ 1

2
1
2 1

]′
and

µ1 = 8

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = −30.40000000 [0.5052631579 0.4947368421 1]′ = c1 X1
(A− α I)−1 X1 = 8.404210526 [0.5002004008 0.4997995992 1]′ = c2 X2
(A− α I)−1 X2 = 8.015390782 [0.5000080006 0.4999919994 1]′ = c3 X3
(A− α I)−1 X3 = 8.000614449 [0.5000003200 0.4999996800 1]′ = c4 X4
(A− α I)−1 X4 = 8.000024576 [0.5000000128 0.4999999872 1]′ = c5 X5
(A− α I)−1 X5 = 8.000000983 [0.5000000005 0.4999999995 1]′ = c6 X6
(A− α I)−1 X6 = 8.000000039 [0.5000000000 0.5000000000 1]′ = c7 X7

values given in Table 11.4. The dominant eigenvalue of (A−2.1I)−1 is µ1 = −10, and the
eigenpair of the matrix A is λ2 = 1/(−10)+ 2.1 = −0.1+ 2.1 = 2 and V 2 =

[
1
4

1
2 1

]′
.

Case (iii): For the eigenvalue λ3 = 1, we select α = 0.875 and the starting vector
X0 =

[
0 1 1

]′. Iteration produces the values given in Table 11.5. The dominant eigen-
value of (A− 0.875I)−1 is µ1 = 8, and the eigenpair of matrix A is λ3 = 1/8+ 0.875 =
0.125 + 0.875 = 1 and V 3 =

[
1
2

1
2 1

]′
. The sequence {Xk} of vectors with the starting

vector
[
0 1 1

]′ converged in seven iterations. (Computational difficulties were encoun-

tered when X0 =
[
1 1 1

]′ was used, and convergence took significantly longer.) �



Numerical Methods Using Matlab, 4th Edition, 2004 
John H. Mathews  and  Kurtis K. Fink 

ISBN: 0-13-065248-2 
 

Prentice-Hall Inc. 
Upper Saddle River, New Jersey, USA 

http://vig.prenhall.com/ 
 
 

 


