
Institute for Advancing Intelligence, TCG CREST
(TCG Centres for Research and Education in Science and Technology)

info.iai@tcgcrest.org
ADMIT CARD FOR PH.D. ENTRANCE EXAMINATION 2022

Candidate’s Name: ANJALI

Candidate’s Address:
c/o Santram Dewangan pragati
vihar colony santoshi nagar
raipur
raipur
PIN: 492001
India

Registration Number: IAIKOL22-612

Date of Birth: 1995-12-06
Photo Id Card Type: Aadhaar/ Voter ID/ Passport/ PAN

Photo Id Card No.:
Email Id: anjali.dewangan1@gmail.com

Test Date: May 28, 2022 (14:00 – 17:30 IST) Test Venue:

Signature of the
Candidate: ONLINE

READ ALL THE INSTRUCTIONS CAREFULLY

 1. This Admit Card is not transferable.

 2. In case of any discrepancy in the scanned photo/signature, the candidate should immediately
 inform the Admission committee by sending an email to info.iai@tcgcrest.org.

 3. For all the answers, please use pen with black/blue ink; for diagrams and rough works,
 you can use lead pencils.

 4. Candidates have to send a scanned copy of the signed admit card along with their scanned
copy of answer scripts..

Introduction to Programming and Data Structures
Ph.D. Coursework: First year, First Semester (Session: 2024-25)

Assignment #04

. .
Full Marks: 300 Instructor: Dr. Laltu Sardar
Clarification Deadline: 2024-Sep-26 Submission Deadline: 2024-Sep-29
. .

Instructions

1. Errors must be handled in all possible functions used, whether from libraries or written by yourself

2. Function names and variable names should clearly describe their purpose.

3. Write the program in such a way, that program does not fails.

4. Magic numbers (like 100 in array[100]) should not be hard-coded across the programs. Instead
define them as macros (E.g. #define ARRAY SIZE 100 and later array[ARRAY SIZE]).

1 Problem #AP0401: Indentation

Indentation in programming is the use of spaces or tabs at the beginning of lines to structure code for
readability and, in some languages like Python, it is a required syntax to define code blocks.

Indentation Rules in C

1. Indent code inside control structures like if, else, for, while, and switch by a fixed number of
spaces or a tab.

2. Always indent code within functions and blocks of code enclosed by curly braces {}.

3. Maintain consistent indentation throughout the codebase, typically using 2, 4, or 8 spaces or a
single tab.

4. Avoid mixing tabs and spaces for indentation to ensure uniformity across editors.

5. Code inside nested blocks should be indented further than outer blocks to reflect hierarchy.

6. Align the closing brace } of a block with the statement that opened the block.

7. Use indentation to visually separate declarations and statements within functions.

Problem statement: Given a list of files on the command line, convert them with proper indentation.

Input: Give user option to use 2,4,8 spaces or tabs. and a set of filenames from command line.

Output: The files with same name and with indentation.
[100]

1

https://laltu-sardar.github.io/courses/courses_pds_2024_25.html
https://laltu-sardar.github.io/

2 Problem #AP0402: Queue Implementation

The objective of this assignment is to design and implement a system that manages the job scheduling
for a quantum computer shared by public users. The public users can have either Free or Premium
accounts, and jobs created by Premium users are to be given higher priority in execution. The system
should enqueue jobs into one or two queues based on the user’s account type and execute the jobs
according to a specified priority order.

Problem Description

You are tasked with building a program to handle user jobs submitted to a quantum computer. The
system must process jobs based on the following rules:

1. Premium users’ jobs should always be executed before Free users’ jobs.

2. Free users’ jobs are processed in the order of their submission, but only after all premium jobs in
the queue are completed.

3. Each job contains the following attributes:

� Creator name: The name of the user who created the job.

� Estimated execution time: A positive integer value representing the time the job will take
to execute, in microseconds.

� Account type: Either “free” or “premium”.

� Timestamp: The date and time when the job was created, in the format YYYY-MM-DD

HH:MM:SS.

4. Upon submission of a job, a job ID should be generated and returned to the user.

5. The system must display the job queue after each job submission and provide a status report of
each job when it is executed.

Input Format

The input to the system is a file containing job data. Each line in the file represents one job in the
following format:

<timestamp> <creator name> <execution time in microseconds> <account type>

For example:

2024-09-19 10:15:00 Alice 500 premium

2024-09-19 10:16:30 Bob 300 free

2024-09-19 10:17:45 Charlie 200 premium

2024-09-19 10:19:00 Diana 400 free

Output Format

1. After every job is enqueued, display the current state of the job queues, showing the jobs in both
the premium and free queues.

2. As jobs are executed, display a status report in the terminal. The report should include the job
ID, creator’s name, estimated execution time, timestamp, and execution status.

2

Example Scenario

Consider the following input from the file job data.txt:

2024-09-19 10:15:00 Alice 500 premium

2024-09-19 10:16:30 Bob 300 free

2024-09-19 10:17:45 Charlie 200 premium

2024-09-19 10:19:00 Diana 400 free

Job Submission

� Alice submits a job at 2024-09-19 10:15:00 with an execution time of 500 microseconds (pre-
mium account).

� Bob submits a job at 2024-09-19 10:16:30 with an execution time of 300 microseconds (free
account).

� Charlie submits a job at 2024-09-19 10:17:45 with an execution time of 200 microseconds
(premium account).

� Diana submits a job at 2024-09-19 10:19:00 with an execution time of 400 microseconds (free
account).

Queue Status after Enqueuing

After the jobs are enqueued, the state of the queues should be:

Premium Queue: [job_1 (Alice, 500ms, 2024-09-19 10:15:00),

job_3 (Charlie, 200ms, 2024-09-19 10:17:45)]

Free Queue: [job_2 (Bob, 300ms, 2024-09-19 10:16:30),

job_4 (Diana, 400ms, 2024-09-19 10:19:00)]

Job Execution

The system will execute the jobs in the following order:

1. Execute Alice’s job (job 1): 500 microseconds.

2. Execute Charlie’s job (job 3): 200 microseconds.

3. Execute Bob’s job (job 2): 300 microseconds.

4. Execute Diana’s job (job 4): 400 microseconds.

For each execution, the system will print a status report like:

Executing job_1: Creator - Alice, Estimated Time - 500ms,

Submitted - 2024-09-19 10:15:00, Status - Completed

Executing job_3: Creator - Charlie, Estimated Time - 200ms,

Submitted - 2024-09-19 10:17:45, Status - Completed

Executing job_2: Creator - Bob, Estimated Time - 300ms,

Submitted - 2024-09-19 10:16:30, Status - Completed

Executing job_4: Creator - Diana, Estimated Time - 400ms,

Submitted - 2024-09-19 10:19:00, Status - Completed

3

Requirements

1. The system must handle an arbitrary number of job submissions.

2. Jobs should be executed in the correct order based on their priority: premium jobs first, followed
by free jobs.

3. The queue should be displayed after each job is submitted.

4. During execution, print the job status to the terminal.

Hints for Implementation

� Job Structure: Each job should have a unique ID, a creator name, estimated execution time,
timestamp, and account type.

� Queue Management: Use two separate queues (e.g., lists or deques) to manage premium and
free jobs.

� Job IDs: Use a counter to generate unique job IDs.

� Input Handling: Read the input file line by line and process each job accordingly.

� Execution Simulation: Use time.sleep() to simulate the job execution time (convert microsec-
onds to seconds for this purpose).

[200]

4

	Problem #AP0401: Indentation
	Problem #AP0402: Queue Implementation

