
Institute for Advancing Intelligence, TCG CREST
(TCG Centres for Research and Education in Science and Technology)

info.iai@tcgcrest.org
ADMIT CARD FOR PH.D. ENTRANCE EXAMINATION 2022

Candidate’s Name: ANJALI

Candidate’s Address:
c/o Santram Dewangan pragati
vihar colony santoshi nagar
raipur
raipur
PIN: 492001
India

Registration Number: IAIKOL22-612

Date of Birth: 1995-12-06
Photo Id Card Type: Aadhaar/ Voter ID/ Passport/ PAN

Photo Id Card No.:
Email Id: anjali.dewangan1@gmail.com

Test Date: May 28, 2022 (14:00 – 17:30 IST) Test Venue:

Signature of the
Candidate: ONLINE

READ ALL THE INSTRUCTIONS CAREFULLY

 1. This Admit Card is not transferable.

 2. In case of any discrepancy in the scanned photo/signature, the candidate should immediately
 inform the Admission committee by sending an email to info.iai@tcgcrest.org.

 3. For all the answers, please use pen with black/blue ink; for diagrams and rough works,
 you can use lead pencils.

 4. Candidates have to send a scanned copy of the signed admit card along with their scanned
copy of answer scripts..

Introduction to Programming and Data Structures
Ph.D. Coursework: First year, First Semester (Session: 2024-25)

Assignment #03

. .
Full Marks: 200 Instructor: Dr. Laltu Sardar
Clarification Deadline: 2024-Sep-16 Submission Deadline: 2024-Sep-18
. .

Instructions

� Use dynamic memory allocation where necessary, and ensure all dynamically allocated memory is
freed appropriately.

� For input/output from/to a file, it is sufficient to use “r” and “w” mode.

� You can not use <string.h> library

� Please discuss, if necessary, with others but do not share your code or any part it.

Problems and Examples

Problem 1: Cycle on Linked Lists

1. Create a linked list (Insertion at the end):
Write a C function to create a singly linked list by inserting nodes at the end of the list. Each node
should contain a data element and a pointer to the next node.

Example:
Input sequence: {1, 2, 3, 4, 5}
Output: 1 → 2 → 3 → 4 → 5 → NULL

2. Create a cycle in the linked list:
Write a function that takes as input a value and the head of the linked list. If the value is found
in the list, link the last node to the node containing that value to create a cycle. If the value does
not exist in the list, no cycle should be created.

Example:
Input: Linked list: 1 → 2 → 3 → 4 → 5 → NULL, Value to link: 3
Output: Linked list with cycle: 1 → 2 → 3 → 4 → 5 → 3 (cycle starts again at 3)

3. Detect a cycle in the linked list:
Write a function to detect if there is a cycle in a given linked list.

Example:
Input: Linked list with cycle as created above
Output: Cycle detected.

1

https://laltu-sardar.github.io/

Problem 2: Remove Duplicates from a Sorted Linked List

1. Create a linked list:
Write a function to create a singly linked list by inserting elements at the end.

Example:
Input sequence: {1, 3, 3, 5, 5, 7}
Output: 1 → 3 → 3 → 5 → 5 → 7 → NULL

2. Sort the linked list:
After creating the linked list, write a function to sort the elements in the list in ascending order.
(This step assumes the list may not be sorted initially.)

Example:
Input sequence: {5, 3, 1, 7, 3}
Output: 1 → 3 → 3 → 5 → 7 → NULL

3. Remove duplicate elements:
Once the linked list is sorted, write a function to remove all duplicate elements, ensuring each
element appears only once in the list.

Example:
Input: 1 → 3 → 3 → 5 → 7 → NULL
Output: 1 → 3 → 5 → 7 → NULL

Problem 3: Find the Middle of a Linked List

Write a function that returns the middle node of a singly linked list. If there are two middle nodes (for
lists with an even number of elements), return the second middle node.

Example: Input: 1 → 2 → 3 → 4 → 5 → NULL Output: The middle node is 3.
Input: 1 → 2 → 3 → 4 → NULL Output: The middle node is 3.

Problem 4: Separate Even and Odd Values

Write a function that takes a linked list as input and separates its even and odd values into two lists,
maintaining the relative order of appearance in the original list.

Example: Input: 1 → 4 → 3 → 6 → 7 → NULL Output: Odd List: 1 → 3 → 7 → NULL Even
List: 4 → 6 → NULL

Problem 5: Reverse the Linked List

Write a function to reverse a singly linked list. The function should modify the list in place and return
the new head of the reversed list.

Example: Input: 1 → 2 → 3 → 4 → 5 → NULL Output: 5 → 4 → 3 → 2 → 1 → NULL

Final Task: Combine All Functions

Create a single C program that includes all the above functions in a meaningful way. Implement a
menu-driven interface to let the user perform the following operations:

1. Create a linked list.

2. Create a cycle in the linked list.

3. Detect a cycle in the linked list.

4. Remove duplicates from a sorted linked list.

5. Find the middle of the linked list.

6. Separate even and odd values from the linked list.

2

7. Reverse the linked list.

Each of the above operations should be accessible through a menu, and the program should handle
user inputs effectively.

3

