
Hash Tables
Course: Design and Analysis of Algorithms

Laltu Sardar

Institute for Advancing Intelligence (IAI),
TCG Centres for Research and Education in Science and Technology (TCG Crest)

Jan 24, 2024

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 1 / 20



Introduction

Hash Table
Previously Studied

Array and Linked List to store a Set of elements.
Insertion Time: O(1) in Both
Search Time: O(N) in Both
Deletion Time: O(N) (As it requires to search before deletion)

Question: How to reduce search time?
Solution: Hash Table
An Effective data structure for dictionaries
It stores a value/element having some key: we say them
key-value pair
E.g.: To store a document: Content can be value while filePath
is the key
E.g.: In real dictionary: word => key and meaning => value
In blockchain: block => value, blockhash => key

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 2 / 20



Introduction

Hash Table
Previously Studied

Array and Linked List to store a Set of elements.
Insertion Time: O(1) in Both
Search Time: O(N) in Both
Deletion Time: O(N) (As it requires to search before deletion)

Question: How to reduce search time?

Solution: Hash Table
An Effective data structure for dictionaries
It stores a value/element having some key: we say them
key-value pair
E.g.: To store a document: Content can be value while filePath
is the key
E.g.: In real dictionary: word => key and meaning => value
In blockchain: block => value, blockhash => key

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 2 / 20



Introduction

Hash Table
Previously Studied

Array and Linked List to store a Set of elements.
Insertion Time: O(1) in Both
Search Time: O(N) in Both
Deletion Time: O(N) (As it requires to search before deletion)

Question: How to reduce search time?
Solution: Hash Table
An Effective data structure for dictionaries

It stores a value/element having some key: we say them
key-value pair
E.g.: To store a document: Content can be value while filePath
is the key
E.g.: In real dictionary: word => key and meaning => value
In blockchain: block => value, blockhash => key

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 2 / 20



Introduction

Hash Table
Previously Studied

Array and Linked List to store a Set of elements.
Insertion Time: O(1) in Both
Search Time: O(N) in Both
Deletion Time: O(N) (As it requires to search before deletion)

Question: How to reduce search time?
Solution: Hash Table
An Effective data structure for dictionaries
It stores a value/element having some key: we say them
key-value pair
E.g.: To store a document: Content can be value while filePath
is the key
E.g.: In real dictionary: word => key and meaning => value
In blockchain: block => value, blockhash => key

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 2 / 20



Introduction

Direct Addressing

A hash table generalizes the simpler notion of an ordinary array

When works?
Universe of keys is small.

How?
Suppose key k ∈ U = {0, 1, . . . ,m − 1}
Take an array T of size m.

Then what?
Insert: value x with k as T [k] = x . (O(1)) time.
Search: just return T[k]. (O(1)) time.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 3 / 20



Introduction

Direct Addressing

A hash table generalizes the simpler notion of an ordinary array

When works?
Universe of keys is small.

How?
Suppose key k ∈ U = {0, 1, . . . ,m − 1}
Take an array T of size m.

Then what?
Insert: value x with k as T [k] = x . (O(1)) time.
Search: just return T[k]. (O(1)) time.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 3 / 20



Introduction

Large Universe

What if key universe is large?
Suppose want to store Aadhaar info where key is 16-digit
Aadhaar No.
requires table of size 1016 ≊ 258

Too large: Impractical
Actual Number of Data: 232

For Large Universe
There may be collision

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 4 / 20



Introduction

Large Universe

What if key universe is large?
Suppose want to store Aadhaar info where key is 16-digit
Aadhaar No.
requires table of size 1016 ≊ 258

Too large: Impractical
Actual Number of Data: 232

For Large Universe
There may be collision

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 4 / 20



Introduction

Hash Table

What to do for large universe:
Consider Aadhaar Data:
Take table of 232 size.
We require a function that maps keys to the indices of T .
domain size (258) is larger than co-domain (232)=> Collision

How to implement with collision
Mixing Array and linked list => Chaining

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 5 / 20



Introduction

Hash Table: Example

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 6 / 20



Introduction

Collision

What about: Insertion & Search complexities?

Worst case
Insertion: O(1), • Search: Worst case O(N), unsuccessful search

Average case
choice of function matters
Each element in co-domain should have equal number of
pre-images.
Simple Uniform hashing
Complexity of Successful search

Insertion: O(1); Search: Worst case O(N/m)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 7 / 20



Introduction

Collision

What about: Insertion & Search complexities?

Worst case
Insertion: O(1), • Search: Worst case O(N), unsuccessful search

Average case
choice of function matters
Each element in co-domain should have equal number of
pre-images.
Simple Uniform hashing
Complexity of Successful search

Insertion: O(1); Search: Worst case O(N/m)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 7 / 20



Introduction

Next Class:

Open addressing:
Linear probing:
Quadratic probing
Double hashing
Analysis of open-address hashing
Universal Hashing
Perfect hashing

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 8 / 20



Introduction

Deletion in a Hash Table

Deletion in Chaining
Process: Just delete the node from the linked list
Complexity: worst case – O(N)
For uniform distribution, average case– O(N)/O(M)

Deletion in Open Addressing
Process: mark as deleted –No actual deletion
Complexity– worst case – O(N)
For uniform distribution ..average case– O(N)/O(M)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 9 / 20



Introduction

Chaining or Open Addressing: What to choose?

Implementation
Chaining: Linked list and Array– Each node in a linked list stores
(key,value, nextPtr)– Array stores heads
Open addressing: Only Array. Array contains (key,value)

chaining is preferred when
the expected number of collisions is high or
when the data is unpredictable and unevenly distributed

open addressing is preferred when
memory usage is a concern
when the data is uniformly distributed

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 10 / 20



Introduction

Probing in Open Addressing:
H(key , 0),H(key , 1), . . . ,H(key , n − 1).. Until we find an empty slot
Where H(key , 0) = h(key)// h is the actual hash function.

Linear Probing
H(key , i) = h(key) + i

Cluster Problem:

Quadratic probing

H(key , i) = h(key) + c1.i + c2.i
2, c1, c2– constants

Cluster reduced: cache problem increased

Double hashing
H(key , i) = h1(key) + i .h2(key), h1, h2– on same co-domain
Cluster reduced further: cache problem increased further

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 11 / 20



Introduction

Selecting Good Hash Function

How to improve: Collision reduction
Good hash function selection: How?

What makes a hash function good?
Simple Uniform hashing:
Example: h(k) = ⌊km⌋: When 0 ≤ k < 1

Most hash function assumes key k as a Natural Number
1 – If not we find a way.
2 E.g., string key "tcg" –represented as 116.1282 + 99.128 + 103

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 12 / 20



Introduction

Selecting Good Hash Function

How to improve: Collision reduction
Good hash function selection: How?

What makes a hash function good?
Simple Uniform hashing:
Example: h(k) = ⌊km⌋: When 0 ≤ k < 1

Most hash function assumes key k as a Natural Number
1 – If not we find a way.
2 E.g., string key "tcg" –represented as 116.1282 + 99.128 + 103

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 12 / 20



Introduction

Division Method

h(k) = k mod m

Discussion
When m = 2p, h(k) is just the p lowest-order bits of k
Good choice of m: A prime not too close to an exact power of 2

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 13 / 20



Introduction

Multiplication Method

h(k) = ⌊m(kA− ⌊kA⌋)⌋ where 0 < A < 1

It is solving choice of m problem
m can be chosen as 2p form. It actually helps. How?

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 14 / 20



universal hashing

Universal class of hash functions
What if some adversary chooses key such a way that all falls in a
single bucket?
Fixing some hash function is not enough.

Universal Hashing
A collection of hash functions that maps universe U of keys to [n].

For any pair k1.k2 ∈ U , The number of hash function for which
h(k1) = h(k2) is at most U/m.
Hint: assume Hi is collection for which h(k) = h(l) = i .

Complexities while Chaining
initially empty table with m slots
any sequence of n INSERT, SEARCH, DELETE –>
complexity-> Θ(n) where n = O(m).

1
Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 15 / 20



universal hashing

Example: Designing universal class of hashing

Example:
p(> m) is a large prime so that 0 ≤ k < p every key
Zp = {0, 1, . . . , p − 1}; Z∗

p = {1, 2, . . . , p − 1};
choose a ∈ Z∗

p and b ∈ Zp

Define Hab(k) = ((ak + b) mod p) mod m

Hab : Zp → Zm: count = p(p − 1)

Other Example:

hk(x) = (k[0] + k[1]x + k[2]x2 + ...+ k[n − 1]x (n − 1)) mod p
mod m; m >> N ; k[i ] is an integer in some range [0,N − 1]

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 16 / 20



universal hashing

Proof

To prove that H is universal, we need to show that for any two
distinct keys k1 and k2, the probability that h(k1) = h(k2) for a
randomly chosen hash function h in H is at most 1/m.
Let’s assume that k1 and k2 are two distinct keys. We want to
compute the probability that h(k1) = h(k2) for a randomly
chosen hash function h in H .
We can express this probability as follows:
P(h(k1) = h(k2)) = P((ak1 + b) mod p mod m = (ak2 + b)
mod p mod m)

Let’s define c = (ak1 + b) mod pandd = (ak2 + b) mod p.

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 17 / 20



universal hashing

Proof: Part-II

Note that c and d are both random integers chosen from the
range [0, p − 1]. Since p is prime and k1 is not equal to k2, we
know that c and d are distinct with probability at least
(p − 2)/p.
Now, let’s consider two cases:
Case 1: c mod m = d mod m

If c mod m = d mod m, thenwehaveh(k1) = h(k2). The
probability of this event is:
P(c mod m = d mod m) =

∑m−1
i=0 P(c mod p = i AND d

mod p = i) =
∑m−1

i=0 P(c mod p = i) ∗ P(d mod p = i) =∑m−1
i=0 (1/p) ∗ (1/p) (since c and d are chosen independently) =

m ∗ (1/p2)

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 18 / 20



universal hashing

Proof: Part-III

Since p > m, we know that 1/p2 < 1/m, so the probability of
h(k1) = h(k2) in this case is at most 1/m.
Case 2: c mod m ̸= d mod m

If c mod m ̸= d mod m, then we have h(k1) ̸= h(k2). The
probability of this event is:
P(c mod m ̸= d mod m) =

∑m−1
i=0 P(c mod p = iANDd

mod p ̸= i) +
∑m−1

i=0 P(c mod p ̸= iANDd mod p = i)

= 2 ∗
∑m−1

i=0 P(c mod p = i) ∗ (1 − P(d mod p = i))

= 2 ∗
∑m−1

i=0 (1/p) ∗ (1 − 1/p) (since c and d are chosen
independently)
= 2 ∗m ∗ ((p − 1)/p2)

Since p > m, we know that (p − 1)/p2 < 1/p, so the probability
of h

Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 19 / 20



universal hashing

Perfect hashing

Question
Can we achieve O(1) memory accesses are required to perform a
search in the worst case.

Yes: When the set of keys is static.
Once the keys are stored in the table, the set of keys never
changes.

Description
Use two levels of hashing, with universal hashing at each level–
primary & secondary
Expected amount of memory used overall– O(N) – How?

How to choose sizes?
Laltu Sardar (IAI, TCG Crest) Intro to Programming & data Structures Jan 24, 2024 20 / 20


	Introduction
	universal hashing

